Chapter 12 (p. 900, 12-5)	converge: An infinite series converges when the common ratio $ r < 1$ and the partial sums approach a fixed number.
converge	$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ converges to 1.
Chapter 12 (p. 900, 12-5)	diverge: An infinite series diverges when the common ratio $ r \ge 1$ and the partial sums do not approach a fixed number.
diverge	1 + 2 + 4 + 8 + 16 + … diverges.
Chapter 12 (p. 863, 12-1)	explicit formula: A formula that defines the n th term a_n , or general term, of a sequence as a function of n .
explicit formula	Sequence: 4, 7, 10, 13, 16, 19, … Explicit formula: <i>a_n</i> = 1 + 3 <i>n</i>
Chapter 12 (p. 862, 12-1)	finite sequence: A sequence with a finite number of terms.
finite sequence	1, 2, 3, 4, 5

