SECTION Ready To Go On? Skills Intervention **11**. 11-1 Permutations and Combinations

Find these vocabulary words in Lesson 11-1 and the Multilingual Glossary.

Vocabulary		
Fundamental Counting Principle	permutation	factorial
combination		

Finding Permutations

A county fair has 12 turkey projects. In how many ways can the judge select first, second, and third place?

A _____ is a selection of a group of objects in which order is important.

This problem is equivalent of selecting and arranging 3 items from _____.

Finding Combinations

Nicholas is going to select 4 baseballs from a group of 12. How many ways can he choose a group of 4 baseballs?

SECTION Ready To Go On? Skills Intervention

11-2 Theoretical and Experimental Probability

Find these vocabulary words in Lesson 11-2 and the Multilingual Glossary.

Vocabulary		
probability	sample space	event
equally likely outcomes	favorable outcomes	complement
theoretical probability	geometric probability	experiment
trial	experimental probability	outcome

Finding Theoretical Probability

A box contains 15 pens: 4 blue, 6 red, 3 black, and 2 green. What is the probability that Judith selects a red pen?

There are _____ possible outcomes and 6 favorable outcomes.

$$P(red) = \frac{\boxed{15}}{15} = \frac{\boxed{5}}{5}$$
$$= 0.40$$

Finding Geometric Probability

Find the probability that a point chosen at random inside the figure shown is in the shaded area.

180

SECTION Ready To Go On? Skills Intervention **11**A 11-3 Independent and Dependent Events

Find these vocabulary words in Lesson 11-3 and the Multilingual Glossary.

Vocabulary

independent events

dependent events

conditional probability

Using a Table to Find Conditional Probability

The table shows the breakdown of middle school students in the foreign language club. Find the probability that a Spanish Club member is in 7th grade.

What is the total number of students in the

Spanish Club?

How many 7th graders are in the Spanish

Club?

Foreign Language Club					
	Spanish	French			
6th	7	2			
7th	14	8			
8th	11	21			

Determining Whether Events Are Independent or Dependent

A change purse contains 35 coins – 20 dimes and 15 nickels. Determine whether the events "a dime is selected, not replaced, and then a nickel is selected" are independent or dependent, and find the probability.

After the first coin is selected, is it replaced back into the purse?

Is the selection of the second coin affected by the first selection?

Are the events independent or dependent?

Not replacing the coin after the first selection means there is one

coin to choose from.

How many total coins are there?

How many are dimes?

If one dime is selected and not replaced, how many coins are left?

How many nickels are in the purse?

Find $P(\text{dime}) \cdot P(\text{nickel/first coin was a dime})$.

Ready To Go On? Skills Intervention SECTION

11A 11-4 Compound Events

Find these vocabulary words in Lesson 11-4 and the Multilingual Glossary.

Vocabulary

simple events	compound events
mutually exclusive events	inclusive events

Finding Probabilities of Compound Events

Each letter of the alphabet is written on a card and placed in a bag. One card is drawn. Find each probability.

- A. Drawing a vowel (A, E, I, O, U) or the letter M.
 - How many cards are in the bag? _____

= $\frac{1}{26}$ + $\frac{5}{1}$

= 26 = _____

C. Of a first grade class's 28 students, 20 ride the bus and 15 buy their lunch. Half of the bus riders buy their lunch. What is the probability that a first grade student does not ride the bus or does not buy their lunch?

What is the total number of first grade students?

How many first grade students do not ride the bus? _____

How many first grade students do not buy their lunch?

How many bus riders do not buy their lunch?

Complete:

_

P(non bus riders) + P(students not buying lunch) - P(bus riders not buying lunch)

How many cards are in the bag? _____

Date Class

How many letters are in the word Cat? _____

How many letters are in the word Mouse?

P(Cat or Mouse) = P(Cat) + P(Mouse)

B. Drawing a letter in the word "Cat" or

"Mouse".

$$= \frac{3}{26} + \frac{26}{26}$$
$$= \frac{26}{26}$$

$$= \frac{3}{26} + \frac{26}{26}$$
$$= \frac{26}{26}$$

Ready To Go On? Quiz

11-1 Permutations and Combinations

- 1. A coach has 9 softball players on his team. In how many ways can the players be placed in a lineup if he does not place them according to ability and each player can only hit once?
- **2.** A department manager is placing flashlights on the shelf. He has a box containing 9 flashlights of all different colors. In how many ways can the manager choose 4 flashlights?
- **3.** A librarian is arranging 7 books in a display. There are places for 8 books. How many ways can the librarian arrange the books?

11-2 Theoretical and Experimental Probability

- **4.** A box contains 21 pieces of fruit: 6 oranges, 3 kiwi, 9 red apples and 3 green apples. Katrina selects a fruit without looking. What is the probability that Katrina selects a red apple?
- **5.** Penny has 6 flashlights in a box; 2 do not contain batteries. If her brother selects 2 flashlights from the box, what is the probability that both do not contain batteries?
- **6.** Find the probability that a point chosen at random inside the figure shown is in the shaded area.

7. An odd-shaped die is rolled 60 times, and a 4 is rolled 18 times. Find the experimental probability of not rolling a 4.

Name	Date	Class

SECTION Ready To Go On? Quiz continued

11A

11-3 Independent and Dependent Events

8. Explain why the events "selecting a card that is not a face card and selecting a face card if you replace the first card before selecting the second from a deck of 52 cards", are independent and find the probability.

9. A bag contains 3 blue chips and 2 green chips. Explain why the events "choosing a blue chip then choosing a green chip without replacing the blue chip" are dependent, and find the probability.

10.	The table shows the breakdown of
	chemistry students for one school year.
	Find the probability that a chemistry
	student is in the 11th grade.

Science Students by Grade					
	Biology	Chemistry			
9th grade	4	0			
10th grade	87	14			
11th grade	23	84			

11. A bag contains 25 slips of paper—12 with letters and 13 with numbers. Determine whether the evens "a numbered paper is selected, replaced, and then a lettered paper is selected" are independent or dependent, and find the probability.

11-4 Compound Events

The numbers 1–20 are written on ping pong balls and placed in a bin. One ping pong ball is drawn. Find each probability.

12. drawing an even number or a 3

- **13.** drawing an even number that is a multiple of 4
- **14.** Of 120 students surveyed, 75 were male and 23 were taking algebra. Only 10 of the algebra students were female. What is the probability that a student surveyed was male taking algebra?

Ready To Go On? Enrichment SECTION

Probability

Solve each problem.

- 1. There are five roads from town A to town B, four roads from town B to town C and two roads directly from town A to town C.
 - a) How many ways can one make a trip from town A to town C? _____
 - b) How many ways can one make a trip from town A to town C by way of town B? _____
 - c) If a route from town A to town C is chosen at random, what is the probability that it goes through town B?
- 2. On a surprise quiz with two questions, an instructor gave one multiple choice question with three choices a, b and c and one true-false question. A student is completely unprepared for the quiz, so she decides to answer at random. If the correct answer is (b, T), find the probability that:
 - a) both questions are answered correctly.
 - b) the first question is answered correctly.
- **3.** A child's set of blocks consists of two red, four blue and five yellow cubes. The blocks can be distinguished only by color. If a child lines the blocks in a row at random what is the probability that:
 - a) a red block comes at both ends? _____
 - b) the five yellow blocks are together? _____
 - c) a blue block comes at both ends? _____
- 4. A sample survey was taken to investigate which papers The Times, The Blade or The Daily Gazette people read. In a sample of 100 people the following results were obtained:
 - 60 read The Times 32 read The Times and The Blade 30 read all three
 - 40 read The Blade 45 read The Times and The Daily Gazette
 - 70 read The Daily Gazette 38 read The Bland and The Daily Gazette
 - If a person is selected at random from the sample of 100 people, what is the probability that
 - a) the person reads only The Times.
 - b) the person reads at least two of the papers. _____
 - c) the person does not read any newspaper. _____

SECTION	Read	у То С	ào On	? Ski	lls Inte	erven	tion	
Find the	11-5 M ese vocab	easure	es of Ce rds in Les	entral	Tenden 5 and the M	c y and Aultilingu	Variation	1
Veeeb						laninga		
expect	ed value	probab	ility distrib	ution	variance	standa	ard deviation	outlier
		I	.,					
Making Math te	g a Box-a st scores:	n d-Whis 67, 99, 73	ker Plot 3, 75, 95, 9	; and Fi 92, 80, 8	nding the 4, 89, 85, 8	e Interqu 5, 86	artile Rang	ge
Step 1	Order the	data from	least to g	reatest.				
	67, 73,	,,		,,	,	_,,		
Step 2	Find the n	ninimum,	maximum,	median,	and quarti	les.		
	The minin	num value	e is [.]	The max	mum value	e is		
	The media	an is the r	niddle val	ue of the	data. The	median is		
	Quartiles	are the		of the	lower and	upper ha	lves of the da	ita set.
	The first c	Juartile (G	1) is:	The t	nird quartile	e (<i>Q</i> 3) is:		
	The interc	uartile ra	nge is <i>Q</i> 3	– <i>Q</i> 1: _				
	 p 3 Draw a box-and-whisker plot. a) Draw a number line. b) Plot a point above each of the five values. c) Draw a box from the first quartile to the third quartile with a line segment through the median. d) Draw whiskers from the box to the minimum and maximum values. 							
			•	•				
		< +++ 60 6	4 68 72	2 76 8	 30 84 88	92 96	+ + ≻ 6 100	
Findin Numbe	g the Me a r of hours	an and s worked:	Standard 8, 3, 4, 3	l Devia t , 3, 5, 2	ion			
Step 1	Find the n	nean: \overline{x} =	<u>8 + 3 +</u>	· [] +	<u> </u>	+ L	<u> </u>	
Step 2	Find the d	ifference	between t	he mean	and each o	data value	e, and square	it.
Data	Value x	8	3	4	3	3	5	2
$x - \overline{x}$	x	4	-1		<u> </u>			
(<i>x</i> –	$\overline{X})^{2}$	16	1	0				
Step 3 Step 4	Find the v Find the s	ariance: tandard d	$\sigma^2 = \frac{16}{2}$	$r = \sqrt{3.4}$	$+ \boxed{ + \boxed{ + \boxed{ 7}}}$	+		:

 Name
 Date
 Class

SECTION Ready To Go On? Skills Intervention

11B 11-6 Binomial Distributions

Find these vocabulary words in Lesson 11-6 and the Multilingual Glossary.

Vocabulary

Binomial Theorem

binomial experiment

binomial probability

Date Class

Expanding Binomials

Use the Binomial Theorem to expand $(4y + 3)^3$.

The sum of the exponents for each term is _____.

$$(4y + 3)^{3} = {}_{3}C_{0}(4y)^{3}3^{0} + \underline{\qquad} (4y)^{2}3^{1} + \underline{\qquad} (4y)^{1}3^{-} + \underline{\qquad} (4y)^{0}3^{-}$$

= 1 \cdot (4y)^{3}3^{0} + \log_2 \cdot 16y^{2}3^{1} + \log_2 \cdot 4y^{1}3^{2} + \log_2 \cdot (4y)^{0}3^{3}
= 64y^{3} + \log_2 y^{2} + \log_2 y + 27

Finding Binomial Probabilities

One in five cars passing through an intersection will make a left turn. Three cars are stopped at the traffic light and will pass through the intersection.

A. What is the probability that exactly 2 cars will turn left?

What is the probability that a car will turn left? _____

The general form for determining a binomial probability is $P(r) = {}_{n}C_{r}$.

What does *n* equal? _____ What does *r* equal? _____

What does *p* equal? _____ What does *q* equal? _____

Substitute known values into the formula: $P(2) = {}_{3}C_{2}$ 0.8³⁻²

= 3(____)(___)

= _____

The probability that exactly two of the cars will turn left is about _____%.

B. What is the probability that at least two cars will turn left?

At least two left turns is the same as exactly 2 or 3 cars turning left.

$$P(2) + P(3) = 0.096 + {}_{3}C_{3} - 0.8^{3-3}$$

= 0.096 + _____

= ___

The probability that at least two cars turn left is about _____%.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Ready To Go On? Quiz SECTION

11B

11-5 Measures of Central Tendency and Dispersion

- 1. The weights of the championship pen of rabbits at the local county fair were recorded as 19, 21, 18, 17, 19, 23, and 20 pounds. Find the mean, median, and mode of the data set.
- 2. The probability distribution for the number of defects in a shipment of computer chips, based on past data, is given below. Find the expected number of defects in a shipment of computer chips.

Number of Defects, <i>n</i>	0	1	2	3	4
Probability of <i>n</i> Defects	0.72	0.16	0.09	0.02	0.01

3. Make a box-and-whisker plot of the data. Find the interguartile range. Number of birds at a bird feeder: 7, 13, 8, 12, 35, 18, 11, 15

4. The number of minutes a commuter waited for a train during the past week are given. Find the commuter wait time within 1 standard deviation of the mean. Commuter wait time: 9, 5, 2, 14, 8, 4, 7

The data set shows the number of words spelled incorrectly on a test by 20 students.

6, 8, 4, 7, 5, 9, 3, 2, 0, 4, 2, 6, 8, 9, 3, 27, 12, 11, 9, 5

- 5. Find the mean and standard deviation of the data.
- 6. Identify the outlier, and describe how it affects the mean and standard deviation.

SECTION Ready To Go On? Enrichment

IIB

Z-scores

Standard scores, also known as *z*-scores enable statisticians to compare values more easily. A *z*-score is the number of standard deviations that a given value *x* is above or below the mean. It is found by using the formula: $z = \frac{x - \overline{x}}{s}$ where *x* is a particular data value, \overline{x} is the mean and *s* is the standard deviation. The use of *z*-scores in statistics is extremely important because they can be used to differentiate between ordinary and unusual values. A *z*-score less than -2.00 or greater than 2.00 is considered to be unusual.

Date Class

Example: Heights of all adult males have a mean of 69 inches and a standard deviation of 2.8 inches. What is the *z*-score for a male that is 78 inches tall?

$$z = \frac{x - \overline{x}}{s} = \frac{78 - 69}{2.8} = 3.21$$

You can interpret this result by stating that an individual 78 inches tall is 3.21 standard deviations above the mean. This would be an unusual height.

Solve

1. A mathematics teacher gives two different tests to two different sections of Algebra classes. The statistics are shown below. Which score is better: an 82 on the section 1 test, or a 46 on the section 2 test?

Section 1: mean = 75 and standard deviation = 14

Section 2: mean = 40 and standard deviation = 8

- 2. The Bean Pole club is open to men and women who are very tall. The minimum height requirement for women is 70 in. If women's heights have a mean of 63.6 inches and a standard deviation of 2.5 inches, find the *z*-score corresponding to a height of exactly 70 inches. Is this height unusual?
- **3.** Three potential employees take a required mathematics test in which three different areas are tested. Which of the following scores has the highest relative position?

Test 1: Score of 37 on a test with a mean of 28 and standard deviation of 6

Test 2: Score of 398 on a test with a mean of 312 and standard deviation of 56

Test 3: Score of 4.10 on a test with a mean of 2.75 and standard deviation of 0.92

Ready To Go On? Skills Intervention IIII 11-5 Measures of Central Tendency and Variation Find these vocabulary words in Lesson 11-5 and the Multilingual Glossary.	Ready To Go On? Skills Intervention IIII 11-6 Binomial Distributions Find these vocabulary words in Lesson 11-6 and the Multilingual Glossary.
Vocabulary expected value probability distribution variance standard deviation outlier	Vocabulary Binomial Theorem binomial experiment binomial probability
Making a Box-and-Whisker Plot and Finding the Interquartile Range Math test scores: 67, 99, 73, 75, 95, 92, 80, 84, 89, 85, 85, 86 Step 1 Order the data from least to greatest. 67, 73, <u>75</u> , <u>80</u> , <u>84</u> , <u>85</u> , <u>85</u> , <u>86</u> , <u>89</u> , <u>92</u> , <u>95</u> , <u>99</u> Step 2 Find the minimum, maximum, median, and quartiles. The minimum value is <u>67</u> . The maximum value is <u>99</u> .	Expanding Binomials Use the Binomial Theorem to expand $(4y + 3)^3$. The sum of the exponents for each term is <u>3</u> . $(4y + 3)^3 = {}_3C_0(4y)^33^0 + \underline{-3}C_1 - (4y)^23^1 + \underline{-3}C_2 - (4y)^33^2 + \underline{-3}C_3 - (4y)^03^{\frac{3}{2}}$ $= 1 \cdot (4y)^33^0 + \underline{-3} - (6y^23^1 + \underline{-3} + 4y^13^2 + \underline{-1} + (4y)^03^3$ $= 64y^3 + \underline{-144}y^2 + \underline{-108}y + 27$
The median is the middle value of the data. The median is $\underline{00}$. Quartiles are the <u>medians</u> of the lower and upper halves of the data set. The first quartile (Q1) is: $\underline{77.5}$. The third quartile (Q3) is: $\underline{90.5}$. The interquartile range is $\underline{Q3} - \underline{Q1}$: $\underline{13}$.	Finding Binomial Probabilities One in five cars passing through an intersection will make a left turn. Three cars are stopped at the traffic light and will pass through the intersection.
 Step 3 Draw a box-and-whisker plot. a) Draw a number line. b) Plot a point above each of the five values. c) Draw a box from the first quartile to the third quartile with a line segment through the median. d) Draw whiskers from the box to the minimum and maximum values. 	A. What is the probability that exactly 2 cars will turn left? What is the probability that a car will turn left? <u>0.2</u> The general form for determining a binomial probability is $P(r) = {}_{n}C_{r} \underline{p}^{r} q^{n-r}$. What does <i>n</i> equal? <u>3</u> What does <i>r</i> equal? <u>2</u> What does <i>q</i> equal? <u>0.8</u> Substitute known values into the formula: $P(2) = {}_{3}C_{2} \underline{0.2}^{2} \underline{0.8}^{3-2} = 3(\underline{0.04})(\underline{0.8})$
Finding the Mean and Standard Deviation Number of hours worked: 8, 3, 4, 3, 3, 5, 2 Step 1 Find the mean: $\bar{x} = \frac{8+3+4+3+3+5+2}{7} = \frac{4}{7}$ Step 2 Find the difference between the mean and each data value, and square it. Data Value x 8 3 4 3 3 5 2 $x - \bar{x}$ 4 -1 0 -1 -1 1 -2 $(x - \bar{x})^2$ 16 1 0 1 1 4 Step 3 Find the variance: $\sigma^2 = \frac{16+1+0+1+1+1+4}{7} = \frac{3.43}{7}$ Step 4 Find the standard deviation: $\sigma = \sqrt{3.43} = \frac{1.85}{7}$	The probability that exactly two of the cars will turn left is about <u>9.6</u> %. B. What is the probability that at least two cars will turn left? At least two left turns is the same as exactly 2 or 3 cars turning left. P(2) + P(3) $= 0.096 + {}_{3}C_{3}$ <u>0.8³-3</u> $= 0.096 + {}_{0}0.008$ $= {}_{0}.104$ The probability that at least two cars turn left is about <u>10.4</u> %.
Copyright O by Holt, Reveluent and Weston. 186 Holt Algebra 2	Copyright © by Holt, Rinehant and Winston. 187 Holt Algebra 2 All rights reserved.
SECTION Ready To Go On? Quiz 1113 11-5 11-5 Measures of Central Tendency and Dispersion 1. The weights of the championship pen of rabbits at the local county fair were recorded as 19, 21, 18, 17, 19, 23, and 20 pounds. Find the mean, median, and mode of the data set. mean = 19.6, median = 19, mode = 19 2. The probability distribution for the number of defects in a shipment of computer chips, based on past data, is given below. Find the expected number of defects	Ready To Go On? Quiz continued 11B 11-6 Binomial Distributions 7. Use the Binomial Theorem to expand $(2x - 3y)^3$. $8x^3 - 36x^2y + 54xy^2 - 27y^3$ The spinner shown is spun 10 times. 8. What is the probability that the spinner will land in the heart area exercise 4 times ²
Number of Defects, n 0 1 2 3 4 Probability of n 0.72 0.16 0.09 0.02 0.01	9. What is the probability that the spinner will land in the heart area at least 2 times. $1 - \left(\left(\frac{1}{5}\right)^6 \cdot \left(\frac{4}{5}\right)^{10} \cdot {}_{10}\mathcal{C}_0 + \left(\frac{1}{5}\right)^1 \cdot \left(\frac{4}{5}\right)^9 \cdot {}_{10}\mathcal{C}_1\right) = 0.625$
 Make a box-and-whisker plot of the data. Find the interquartile range. Number of birds at a bird feeder: 7, 13, 8, 12, 35, 18, 11, 15 	A multiple-choice quiz has 7 questions. Each question has 4 possible answers. A student guesses the answer to each question. Find each
<pre></pre>	10. The student answers all 7 questions correctly. $\frac{\left(\frac{1}{4}\right)^7 \cdot \left(\frac{3}{4}\right)^0 \cdot {}_7C_7 = 0.0000610$
Interquartile range = 7 4. The number of minutes a commuter waited for a train during the past week are given. Find the commuter wait time within 1 standard deviation of the mean. Commuter wait time: 9, 5, 2, 14, 8, 4, 7 3.9 min to 10.63 min	11. The student answers each ' question correctly. $\frac{\left(\frac{1}{4}\right)^{1} \cdot \left(\frac{3}{4}\right)^{6} \cdot {}_{7}\mathcal{C}_{1} = 0.31$ 12. The student answers all 7 questions incorrectly. $\left(\frac{1}{4}\right)^{0} \cdot \left(\frac{3}{4}\right)^{7} \cdot {}_{7}\mathcal{C}_{0} = 0.13$
The data set shows the number of words spelled incorrectly on a test by 20 students. 6, 8, 4, 7, 5, 9, 3, 2, 0, 4, 2, 6, 8, 9, 3, 27, 12, 11, 9, 5	13. The student answers at least 1 question correctly. $1 - 0.13 = 0.87$
 5. Find the mean and standard deviation of the data. <u>mean = 7, standard deviation = 5.54</u> 6. Identify the outlier, and describe how it affects the mean and standard deviation. <u>Outlier: 27; The mean changes from 7 to 5.9, and the standard</u> <u>deviation changes from 5.54 to 3.19</u>. 	

11B	n? Enrichment		SECTION Ready To Go 12A 12-1 Introducti	o On? Skills Intervention fon to Sequences	on
Z-scores			Find these vocabulary words	s in Lesson 12-1 and the Multilingual	Glossary.
Standard scores, also known as z-s more easily. A z-score is the numbe above or below the mean. It is foun- particular data value, \overline{x} is the mean	scores enable statisticians to compare values or of standard deviations that a given value x is d by using the formula: $z = \frac{x - \bar{x}}{s}$ where x is n and s is the standard deviation. The use of	s s a	Vocabulary sequence infinite	sequence finite sequence	ula
z-scores in statistics is extremely im differentiate between ordinary and u greater than 2.00 is considered to b	nportant because they can be used to unusual values. A <i>z</i> -score less than -2.00 or be unusual.		Find the first five terms of a sequence A. $a_n = a_{n-1} + 1$, where $n \ge 1$	ach sequence. 2 and $a_1 = 1$	uia
Example: Heights of all adult male deviation of 2.8 inches. What is the $-X - \overline{X}$ 78 - 69	es have a mean of 69 inches and a standard <i>z</i> -score for a male that is 78 inches tall?		$a_1 = 1$ $a_2 = 1 + 1 = 2$	The first term is given. Substitute $a_1 = 1$ into the rule $a_n = a_n$	$a_{n-1} + 1$ to find a_2 .
$Z = \frac{1}{S} = \frac{1}{2.8} = 3.21$ You can interpret this result by statil standard deviations above the mean	ng that an individual 78 inches tall is 3.21 n. This would be an unusual height.		$a_3 = 2^{+} + 1 = 3^{+} + 1 = 4^{-}$	Repeat to find a_3 . Repeat to find the next term,	
Solve			$a_5 = 4 + 1 = 5$	Repeat to find the fifth term.	
 A mathematics teacher gives tw Algebra classes. The statistics a on the section 1 test or a 46 or 	vo different tests to two different sections of are shown below. Which score is better: an 82 n the section 2 test?	2	B. $a_n = 3a_{n-1} - 1$, where $n = a_{n-1} - 1$	≥ 2 and $a_1 = 1$	
Section 1: mean = 75 and stan	ndard deviation = 14		$a_1 = 1$ $a_2 = 3(1) - 1 = 2$	Substitute $a_1 = 1$ into the rule $a_n = 3$	$3a_{n-1} - 1$ to find a_2 .
Section 2: mean = 40 and stan	indexideviation = 8 $= 0.75$		$a_3 = 3(\underline{2}) - 1 = \underline{5}$	Repeat to find a ₃ .	
A 46 on the section 2 test	is a better score. $2 = 0.75$,		$a_4 = 3(5) - 1 = 14$	_ Repeat to find the next term.	
2. The Bean Pole club is open to height requirement for women i	men and women who are very tall. The minim is 70 in. If women's heights have a mean of	ium	$a_5 = 3(14) - 1 = 41$	_ Repeat to find the fifth term.	
corresponding to a height of ex z-score is 2.56, the height	actly 70 inches. Is this height unusual? t would be considered unusual.		Finding Terms of a Seque Find the first three terms of	ence by Using the Explicit Formu each sequence.	ula
3. Three potential employees take different areas are tested. Which	e a required mathematics test in which three ch of the following scores has the highest relat	tive	A. $a_n = 2n - 1$, where $n \ge 1$ $a_1 = 2 \cdot 1 - 1 = \underline{1}$	Let $n = 1$. Substitute this value into t $a_n = 2n - 1$ to find a_1 .	the formula
Test 1: Score of 37 on a test wi	ith a mean of 28 and standard deviation of 6		$a_2 = 2(\underline{2}) - 1 = \underline{3}$	Let $n = 2$. Substitute this value into t $a_n = 2n - 1$ to find a_2 .	he formula
Test 2: Score of 398 on a test v Test 3: Score of 4.10 on a test v	with a mean of 312 and standard deviation of a with a mean of 2.75 and standard deviation of	56 f	$a_3 = 2(3) - 1 = 5$	Let $n = 3$. Substitute this value into t $a_n = 2n - 1$ to find a_3 .	he formula
z-scores of 1.5, 1.54 and highest relative position.	1.47; the score of 398 has the		B. $a_n = 3^m - n$, where $n \ge 1$ $a_1 = 3^1 - 1 = 2$	Let $n = 1$. Substitute this value into t	the formula to find a_1 .
Copyright © by Holt, Rinehart and Winston.	190	Holt Algebra 2	Copyright © by Holt, Rinehart and Winston.	ng terms: $a_2 = 3 = -2 = -2 = -2 = -2 = -2 = -2 = -2$	Holt Algebra 2
	n? Problem Solving Interv	vention		o On? Skills Interventio	on
12A 12-1 Introduction	to Sequences		12A 12-2 Series and	d Summation Notation	
A recursive formula is a rule to deso terms are used to generate the next	cribe a sequence where one or more previous tt term.	5	Find these vocabulary words	s in Lesson 12-2 and the Multilingual	Glossary.
Grace has an action figure from a p	anular agiange fiction movie still in its original		Vocabulary		
in value by about 7% a year	. Action figures from this movie typically increa	ise	series summation	notation infinite series	
a. Write a recursive rule predicting	Action figures from this movie typically increase the value of the figure each year.	150	series summation Using Summation Notation	notation infinite series	2
packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred	Action figures from this movie typically increa the value of the figure each year. dict the value of the figure in 10 years.	150	Series summation Using Summation Notation Write this series using summ Find a rule for the <i>k</i> th term of the	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{1}$ the sequence.	2 625
ackaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem	Action figures from this movie typically increate the value of the figure each year. dict the value of the figure in 10 years.	126	series summation Using Summation Notation Write this series using summ Find a rule for the <i>k</i> th term of the Look at the numerators?	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence.	2 625
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the first 2. Will the value of the first increases 	Action figures from this movie typically increased the value of the figure each year. dict the value of the figure in 10 years.		series summation Notatie Using Summation Notatie Write this series using summ Find a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> .	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125}$ the sequence.	2 625
 packaging, it is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure incre 3. By how much will the value incre 	Action figures from this movie typically increa the value of the figure each year. dict the value of the figure in 10 years. igure?\$75 ease or decrease?Increase rease each year?By 7% of whatever the	150 16	series summation Using Summation Notati Write this series using summ Find a rule for the <i>k</i> th term of t Look at the numerators: Each numerator is _2 Look at the denominators: Each denominator is the base	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}$	2 625
ac. Rading. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure incre 3. By how much will the value inci Value V	Action figures from this movie sum in its original the value of the figure each year. dict the value of the figure in 10 years. igure?		series summation Notati Write this series using summ Find a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}$	2 625
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure increases. a. Will the value of the figure increases. b. Will the value of the figure increases. Walue N Make a Plan 4. What do you need to determine 	Action figures from this movie typically increase the value of the figure each year. dict the value of the figure in 10 years. igure?		series summation Notation Write this series using summation Notation Write this series using summation a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> . Look at the denominator is the base Write the rule for the sequence Write the notation for the first f	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{25}$ to a power of 0, 1, 2, 3, and $\frac{4}{2}$. is: $a_{k} = \frac{2}{5^{\frac{1}{12}}}$ ive terms: $\sum_{k=0}^{\frac{1}{12}} \frac{2}{5^{\frac{1}{12}}}$	<mark>2</mark> 525
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting to b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure increases. a. Will the value of the figure increases. b. Will the value of the figure increases. Wake a Plan 4. What do you need to determine value of the action figure 5. Let a_n represent the value of the value value of the value value of the value value of the value va	Action figures from this movie sum in its original Action figures from this movie typically increa- the value of the figure each year. dict the value of the figure in 10 years. igure?		series summation Using Summation Notation Write this series using summation Find a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first for Evaluating a Series	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2}$ to a power of 0, 1, 2, 3, and $\frac{4}{2}$. $\frac{2}{2}$ to a power of 0, 1, 2, 3, and $\frac{4}{5}$. ive terms: $\sum_{k=0}^{12} \frac{1}{5^k}$	2 625
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting i b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure increases. a. By how much will the value increases of the value in the previous year? b. Let a_n represent the value of the value in the previous year? c. By how much did the value increases. 	Action figures from this movie typically increase the value of the figure each year. dict the value of the figure in 10 years. igure?	3 6 	series summation Using Summation Notation Write this series using summation Find a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first for Evaluating a Series The value of π can be approxisi Expand the series $\pi \approx 4\sum_{n=1}^{\infty} 2$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}$	2 625
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting if b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure increase. 2. Will the value of the figure increase. 3. By how much will the value increase. Make a Plan 4. What do you need to determine value of the action figure 5. Let <i>a_n</i> represent the value of the value in the previous year? 6. By how much did the value of the other of the value in the value in	Action figures from this movie typically increase the value of the figure each year. dict the value of the figure in 10 years. igure?	 e -1	series summation Using Summation Notatii Write this series using summ Find a rule for the kth term of the the term of the the the numerators: Each numerator is 2^{-} . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first f Evaluating a Series The value of π can be approxian Expand the series $\pi \approx 4\sum_{k=0}^{\infty} 2^{-k}$ Write out the first five terms.	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}$	2 625
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting in b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure increation of the value of the figure increation. Will the value of the figure increation of the value increation of the value of the value increation. Make a Plan 4. What do you need to determine value of the action figure 5. Let <i>a_n</i> represent the value of the value in the previous year? 6. By how much did the value of the 7. Write a recursive rule to model 	Action figures from this movie sum in its original Action figures from this movie typically increa- the value of the figure each year. dict the value of the figure in 10 years. igure?	.1	series summation Using Summation Notation Write this series using summation Find a rule for the <i>k</i> th term of the Look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first for Evaluating a Series The value of π can be approxin Expand the series $\pi \approx 4 \sum_{k=0}^{\infty} 2$ Write out the first five terms. $\pi \approx 4 \left(\frac{(-1)^{1}}{2 \cdot 0 + 1} + \frac{(-1)^{1}}{2 \cdot 1} + 1 \right)$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{-5}{10} \text{ to a power of } 0, 1, 2, 3, \text{ and } -\frac{4}{2} + \frac{2}{5} +$	$\frac{2}{525}$ ies. $(-1)(4)$
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting in b. Use the recursive formula to predicting in b. Use the recursive formula to predicting in the value of the figure increase. Will the value of the figure increase. By how much will the value increase. Make a Plan What do you need to determine value of the action figure Let a_n represent the value of the value in the previous year?	Action figures from this movie typically increases the value of the figure each year. dict the value of the figure in 10 years. igure?	 e 54	series summation Using Summation Notatii Write this series using summ Find a rule for the <i>k</i> th term of the table t	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2} \text{ to a power of } 0, 1, 2, 3, \text{ and } -\frac{4}{2} + \frac{2}{5} + 2$	$\frac{2}{625}$ ies. $(-1)^{(4)}$ (4 + (1))
 packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting in b. Use the recursive formula to predicting in b. Use the recursive formula to predict the initial value of the figure increase. a. With a value of the figure increase. b. Will the value of the figure increase. b. Will the value of the figure increase. b. Will the value of the figure increase. c. Will the value of the figure increase. a. What do you need to determine value of the action figure. c. Let a_n represent the value of the value in the previous year? c. By how much did the value of the value of the value of the arcursive rule to model a_n = Solve a. Use the recursive rule to predict on the value of the sector figure. 	Action figures from this movie sum in its original Action figures from this movie typically increa- the value of the figure each year. dict the value of the figure in 10 years. igure?	.1 54	series summation Using Summation Notation Write this series using summation Find a rule for the <i>k</i> th term of the look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first for Evaluating a Series The value of π can be approxin Expand the series $\pi \approx 4\sum_{k=0}^{\infty} \frac{2}{2}$ Write out the first five terms. $\pi \approx 4\left(\frac{(-1)^{n}}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 1} + \frac{1}{3}\right) + \frac{1}{5} + \frac{-1}{(77)}$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2} \text{ to a power of 0, 1, 2, 3, and } -\frac{4}{2} + \frac{4}{5}$ ive terms: $\frac{5}{2} \frac{12}{5^{k}}$ mated by a partial sum of an infinite series $\frac{(-1)^{k}}{1} + \frac{(-1)^{2}}{2 \cdot 2 + 1} + \frac{(-1)^{3}}{2 \cdot 3} + \frac{1}{2} + \frac{2}{2} + \frac{1}{3}$	$\frac{2}{625}$
packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting ib b. Use the recursive formula to pred Understand the Problem 1. What is the initial value of the figure incre 3. By how much will the value incre 3. By how much will the value incre 4. What do you need to determine value of the action figure 5. Let a_n represent the value of th value in the previous year? 6. By how much did the value of th value in the previous year? 6. By how much did the value of th value in the previous year? 7. Write a recursive rule to model 2. By how much did the value of th value in the previous year? 8. Use the recursive rule to predic Look Back 9. You can check your solution by this pattern is the same as the	Action figures from this movie typically increase the value of the figure each year. dict the value of the figure in 10 years. igure?	 <u> e</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u>-</u>	series summation Using Summation Notation Write this series using summation Find a rule for the kth term of the look at the numerators: Each numerator is <u>2</u> . Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first ff Evaluating a Series The value of π can be approxin Expand the series $\pi \approx 4 \sum_{k=0}^{\infty} \frac{2}{2}$ Write out the first five terms. $\pi \approx 4 \left(\frac{(1)^{\circ}}{2 \cdot 0 + 1} + \frac{(-1)\frac{1}{2}}{2 \cdot \frac{1}{2}} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right)$ Simplify. 3 33068	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2} \text{ to a power of } 0, 1, 2, 3, \text{ and } \frac{4}{2} - \frac{2}{2} + \frac{2}{5} + $	$\frac{2}{625}$ ies. (-1)(4)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1
packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting if b. Use the recursive formula to predicting if b. Use the recursive formula to predicting if b. Use the recursive formula to predicting if c. Use the recursive formula to predicting if a. What is the initial value of the figure increases a. By how much will the value of the figure increases walue of the action figure 5. Let a_n represent the value of the value in the previous year? 6. By how much did the value of the value in the previous year? 7. Write a recursive rule to model a. Use the recursive rule to prediction by this pattern is the same as the $a_n = a_0(1 + r)^t = 75(1 + 0.0)$	Action figures from this movie typically increases the value of the figure each year. dict the value of the figure in 10 years. igure?		seriessummationUsing Summation NotationWrite this series using summationFind a rule for the kth term of the Look at the numerators:Each numerators:Each numerators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominator is the baseWrite the rule for the sequenceWrite the notation for the first forEvaluating a SeriesThe value of π can be approxinExpand the series $\pi \sim 4 \sum_{k=0}^{\infty} \frac{0}{2}$ Write out the first five terms. $\pi \simeq 4 \left(\frac{(-1)}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{3} + \frac{1}{5} + \frac{(-1)\sqrt{11}}{7} \right)$ Simplify. $\pi \simeq \frac{1}{3.33968}$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2} \text{ to a power of 0, 1, 2, 3, and } -\frac{4}{2} + \frac{4}{2} + \frac{2}{5} + \frac{2}{5} + \frac{2}{125} + $	$\frac{2}{525}$
packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting if b. Use the recursive formula to predicting if b. Use the recursive formula to predicting if c. Use the recursive formula to predicting if a. What is the initial value of the figure increases a. By how much will the value increases a. By how much will the value increases Make a Plan 4. What do you need to determine <u>value of the action figure</u> 5. Let a_n represent the value of the value in the previous year? 6. By how much did the value of the value in the previous year? 7. Write a recursive rule to medel <u>a_n =</u> Solve 8. Use the recursive rule to predict Look Back 9. You can check your solution by this pattern is the same as the $a_n = a_0(1 + r)^t = 75(1 + 0.0)$ Does your answer check? <u>Yea</u>	Action figures from this movie typically increases the value of the figure each year. dict the value of the figure in 10 years. igure?		seriessummationUsing Summation NotationWrite this series using summationFind a rule for the kth term of the Look at the numerators:Each numerators:Each numerators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominators:Each denominator is the baseWrite the rule for the sequenceWrite the notation for the first fEvaluating a SeriesThe value of π can be approxinExpand the series $\pi \sim 4 \sum_{k=0}^{\infty} \frac{2}{2}$ Write out the first five terms. $\pi \simeq 4 \left(\frac{(-1)}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 1 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 1 + 1} + \frac{(-1)\sqrt{11}}{3} + \frac{1}{5} + \frac{(-1)\sqrt{12}}{7} \right)$ Simplify. $\pi \simeq \frac{3.33968}{3.33968}$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{22} \text{ to a power of 0, 1, 2, 3, and } -\frac{4}{2} + \frac{4}{2} + \frac{2}{5} + \frac{2}{5} + \frac{2}{125} + \frac{2}{125} + \frac{2}{125} + \frac{2}{5} +$	$\frac{2}{525}$
packaging. It is currently worth \$75. in value by about 7% a year. a. Write a recursive rule predicting if b. Use the recursive formula to predicting if b. Use the recursive formula to predicting if c. Use the recursive formula to predicting if a. What is the initial value of the figure increases a. By how much will the value increases b. Will the value of the figure increases a. By how much will the value increases Make a Plan 4. What do you need to determine <u>value of the action figure</u> 5. Let a_n represent the value of the value in the previous year? 6. By how much did the value of the value in the previous year? 7. Write a recursive rule to model <u>a_n =</u> Solve 8. Use the recursive rule to predict Look Back 9. You can check your solution by this pattern is the same as the $a_n = a_0(1 + r)^t = 75(1 + 0.0)$ Does your answer check? <u>Yee</u>	Action figures from this movie typically increases the value of the figure each year. dict the value of the figure in 10 years. igure?	10 10 10 10 10 10 10 10 10 10	series summation Using Summation Notation Write this series using summation Find a rule for the <i>k</i> th term of the look at the numerators: Each numerator is $\underline{2}$. Look at the denominators: Each denominator is the base Write the rule for the sequence Write the notation for the first find Evaluating a Series The value of π can be approxini Expand the series $\pi \approx 4 \sum_{k=0}^{\infty} \frac{2}{2}$ Write out the first five terms. $\pi \approx 4 \left(\frac{(-1)^0}{2 \cdot 0 + 1} + \frac{(-1)\sqrt{11}}{2 \cdot 1} + \frac{1}{3} + \frac{1}{5} + \frac{-1}{7} \right)$ Simplify. $\pi \approx \frac{3.33968}{2}$	notation infinite series on nation notation. $2 + \frac{2}{5} + \frac{2}{25} + \frac{2}{125} + \frac{2}{125}$ the sequence. $\frac{5}{2} \text{ to a power of 0, 1, 2, 3, and } -\frac{4}{2} + \frac{2}{2} + \frac{2}{5} + \frac{2}{5} + \frac{2}{125} + \frac{2}{125} + \frac{2}{5} + $	$\frac{2}{525}$ ies. (-1)/4/(-1)/(-1)/(-1)/(-1)/(-1)/(-1)/(-1)/(-1)