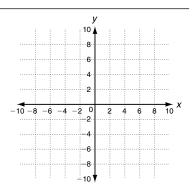

LESSON Reading Strategies

Draw Conclusions 9-6


Sometimes there is a pattern in real-world data that describes the relationship. Often we can use the pattern to draw conclusions about the function.

Function	Linear	Quadratic	Exponential	Square Root
Constant	Constant first	Constant second	Constant ratios	Constant second
Differences/	differences	differences	between	differences
Ratios	between y-values	between y-values	<i>y</i> -values	between <i>x</i> -values
	(x-values evenly	(x-values evenly	(<i>x</i> -values	(y-values evenly
	spaced).	spaced).	evenly spaced).	spaced).

Use the graphs above for Exercises 1–2.

- **1. a.** What type of function is represented by Graph A?
 - **b.** What conclusions can you draw about the data set for the function represented by Graph A?
- 2. a. What type of function is represented by Graph B?
 - b. What conclusions can you draw about the data set for the function represented by Graph B?
- **3.** On the coordinate plane at right, sketch the graph of a function that has constant ratios between y-values with evenly spaced x-values.
- **4.** On the coordinate plane at right, sketch the graph of a function that has constant first differences and includes the points (-4, 6) and (0, 0).

State Reteach 9-6 Modeling Real-World Data (continued)	Challenge 9-6 Polynomials by Interpolation					
After determining a parent function to model a data set, use the regression	-	-		he used to		
feature on a graphing calculator to find a function that models the data. Write a function that models the data.	Constant differences of the dependent variables can also be used to determine cubic, quartic, and higher degree polynomial functions.					
x 4 5 6 7 8 x 4 5 6 7 8		lifferences indicate a cate a quartic polyno	cubic polynomial. Co mial, and so on.	onstant fourth		
y 71 93 121 157 204	Once the degree	e of the polynomial i	s determined, polyno	mial interpolation		
Step 1 Find first differences.	$f(x) = ax^3 + bx$		ppropriate. Substitute			
First differences: 22 28 36 47 204 - 157 = 47		et to identify the cons tem of linear equatio	stants <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> b ns.	by solving the		
Step 2 Since first differences are not constant, find second differences. Second differences: 6 8 11	For each data.	determine the dear	ee of the polynomia	al that is the best		
Step 3 Since second differences are not constant, analyze ratios. Ratios are all	fit and then fin	d the polynomial b				
$\frac{93}{71} = 1.310, \frac{121}{93} = 1.301, \frac{157}{121} = 1.298, \frac{204}{157} = 1.299$	1. <u>x</u>	-4 -3 -2 21 5 -5		1 2 1 15	3 4 35 61	
Step 4 An exponential model best fits the data since the ratios are		- · ·		I I	35 01	
almost constant. Use a graphing calculator. Perform exponential regression. Select ExpReg from the STAT CALC menu.		Qua	idratic; $y = 3x^2$	+ 5 <i>x</i> - 7		
ExpReg	2. <u>x</u>	-4 -3 -2		1 2 20 –9	3 4	
$y = a^*b^x$ An exponential model	<u>y</u> –	-795 -284 -6			-116 -403	
$a = 24.8379125$ that fits the data is $f(x) = 24.8(1.3^{x})$.		Quartic; y	$= -2x^4 + 3x^3 -$	$-7x^2 + x + 2$	5	
b = 1.301415677 $r^2 = .999953961$	3. x	-4 -3 -2		1 2	3 4	
r = .9999769803	<u>y</u> –	-348 -154 -5	2 -12 -4	2 36	128 308	
Complete to units a function that models the circan data		Cubi	$c; y = 5x^3 - x^2$	+2x - 4		
Complete to write a function that models the given data.	4. <u>x</u>	-4 -3 -2	1 0	1 2	3 4	
x 3 4 5 6 7 y 33 56 86 123 167	y –	1003 -222 -1	1 20 21	22 53	264 1045	
3. Are the x-values evenly spaced? Yes			Quintic; $y = x^5$	+ 21		
4. Are the first differences constant? No	5. x	-4 -3 -2	2 -1 0	1 2	3 4	
5. Are the second differences constant? Yes	y 1	268 442 152	2 98 100	98 152	442 1268	
6. What is an appropriate model for the data? 7. Find a function that models the data. $f(x) = 3.5x^2 - 1.5x + 6$		Qua	rtic; $y = 5x^4 - 7$	$x^{2} + 100$		
7. Find a function that models the data. $7(x) = 3.3x - 1.3x + 0$						
Capyright O by Holt, Rinchart and Winston. 47 Holt Algebra 2	Copyright © by Holt, Rinehar All rights reserved.	rt and Winston.	48		Holt Algebra 2	
· · · · · · · · · · · · · · · · · · ·						
		ding Strate				
9-6 Modeling Real-World Data	9-6 Drav	v Conclusions		es the relationship.		
9-6 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is	9-6 Drave Sometimes there	v Conclusions				
950 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues.	9-6 Draw Sometimes there Often we can us Function	e is a pattern in real-weight the pattern to draw	vorld data that describ conclusions about the Quadratic	Exponential	Square Root	
SED Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the	9-6 Draw Sometimes there Often we can us Function Constant Differences/	v Conclusions e is a pattern in real-wee the pattern to draw Linear Constant first differences	orld data that describ conclusions about the Quadratic Constant second differences	Exponential Constant ratios between	Constant second differences	
Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. Lincoln Valley Population 2000–2006	9-6 Draw Sometimes there Often we can us Function Constant	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly	orld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly	function. Exponential Constant ratios between y-values (x-values	Constant second differences between x-values (y-values evenly	
Lincoln Valley Population 2000–2006 Year 1 2 3 4 5 6 7 Population 1049 1137 1229 1326 1434 1542 1662	9-6 Draw Sometimes there Often we can us Function Constant Differences/	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values	vorld data that describ conclusions about the Quadratic Constant second differences between y-values	Exponential Constant ratios between y-values	Constant second differences between x-values	
Uncoling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. <u>Lincoln Valley Population 2000–2006</u> <u>Vear 1 2 3 4 5 6 7 Population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable </u>	9-6 Draw Sometimes there Often we can us Function Constant Differences/	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly	orld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly	function. Exponential Constant ratios between y-values (x-values	Constant second differences between x-values (y-values evenly	
950 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. Image: Construct the continues. Image: Construct the continues. Image: Construct the continues. Image: Control the cont	9-6 Draw Sometimes there Often we can us Function Constant Differences/	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	orld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly	function. Exponential Constant ratios between y-values (x-values	Constant second differences between x-values (y-values evenly	
Uncoling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. <u>Lincoln Valley Population 2000–2006</u> <u>Vear 1 2 3 4 5 6 7 Population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable </u>	9-6 Draw Sometimes there Often we can us Function Constant Differences/	e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly	
950 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. <u>Lincoln Valley Population 2000-2006</u> <u>Vear 1 2 3 4 5 6 7</u> <u>Population 1049 1137 1229 1326 1434 1542 1662</u> 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. <u>The independent variable (x) is the year. The dependent variable (y) is the population. (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later </u>	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	function. Exponential Constant ratios between y-values (x-values	Constant second differences between x-values (y-values evenly	
Bob Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. Lincoln Valley Population 2000-2006 Year 1 2 3 4 5 6 7 Population 1049 1137 1229 1326 1434 1542 1662 A what is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? What is the ground variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable (y) is the population. Constant the population. A make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences must be constant.	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly	
See Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. Image: Considering the state of the state	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 See Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. Incoln Valley Population 2000–2006 Year 1 2 3 4 5 6 7 Population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences. 8. Find the first differences. 8. 92, 97, 108, 108, 120 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	e is a pattern in real-we the pattern to draw the the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	orld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
Sed Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. 1100000000000000000000000000000000000	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	e is a pattern in real-we the pattern to draw the the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced). Graph A s above for Exercis- be of function is repro-	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
Set Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. $\frac{1 \text{ incoln Valley Population 2000-2006}}{\frac{1}{\text{ Year}} + \frac{1}{2} + \frac{2}{3} + \frac{4}{5} + \frac{5}{6} + \frac{7}{7}}{\frac{1}{\text{ Population}}} + \frac{1}{100} + \frac{1}{137} + \frac{1}{1229} + \frac{1}{1326} + \frac{1}{1344} + \frac{1}{1542} + \frac{1}{1662}}{\frac{1}{2}}$ 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences must be constant. 3. Use the table of data. a. Find the first differences. <u>88, 92, 97, 108, 108, 120</u> b. Find the second differences.	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	P Conclusions e is a pattern in real-we te the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced). y Graph A s above for Exercis be of function is reprn nclusions can you di ?	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
9.50 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. $\frac{1 \text{ incoln Valley Population 2000-2006}}{\frac{1}{\text{ Year}} + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{5}{5} + \frac{6}{6} + \frac{7}{7}}{\frac{1}{\text{ Population}}} + \frac{1}{1049} + \frac{1}{137} + \frac{1}{1229} + \frac{1}{1326} + \frac{1}{1344} + \frac{1}{1542} + \frac{1}{1662}}{\frac{1}{20}}$ 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences must be constant. 3. Use the table of data. a. Find the first differences. <u>88, 92, 97, 108, 108, 120</u> b. Find the second differences. <u>4, 5, 11, 0, 12</u> c. Find the third differences. <u>1, 6, -11, 12</u>	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	P Conclusions e is a pattern in real-we te the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced). y Graph A s above for Exercis be of function is reprn nclusions can you di ?	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values (x-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
ESG Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. $\frac{1 \text{incoln Valley Population 2000-2006}}{\frac{1}{2 \text{ ear } 1} \frac{1}{2 \text{ of } 2} \frac{3}{3 \text{ of } 4} \frac{4}{5 \text{ of } 1542} \frac{1}{1662}}{\frac{1}{2 \text{ of } 1344} \frac{1}{1542} \frac{1}{1662}}$ 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences must be constant. 3. Use the table of data. a. Find the first differences. <u>4, 5, 11, 0, 12</u> c. Find the third differences. <u>1, 6, -11, 12</u> d. Find the traitos between y-values. All ratios round to 1 08	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	P Conclusions a is a pattern in real-we te the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
9.50 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the current trend continues. 1100000000000000000000000000000000000	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values (x-values (x-values devenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
920 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? What is the generation. 1. What is the independent variable? What is the generation. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. 3. Use the table of data. 3. Use the table of data. 3. Use the table of data. 4. Find the first differences. 8. 92, 97, 108, 108, 120 b. Find the second differences. 1. 6, −11, 12 c. Find the trid differences. 1. 6, −11, 12 d. Find the ratios between y-values. All ratios round to 1.08. 4. What kind of function will best describe the data? Justify your conclusion. Exponential function, because the ratios between y-values are	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	Avoid data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 B20 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 10409 1137 1229 1326 14341 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable? Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Possible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be linear, the first differences. 8. 92, 97, 108, 108, 120 b. Find the first differences. <u>4, 5, 11, 0, 12</u> c. Find the third differences. <u>1, 6, -11, 12</u> d. Find the third differences. <u>1, 6, -11, 12</u> d. Find the third of unction will best describe the data? Justify your conclusion. Exponential function, because the ratios between <i>y</i>-values are almost constant. 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Constant second differences between y-values (x-values evenly spaced). • * es 1–2. esented by Graph A? raw about the data set stant second diffe evenly spaced x- esented by Graph B? w about the data set fa ant first difference spaced x-vali , sketch the graph	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
BSD Modeling Real-World Data The table shows the population of Lincoln Valley over the last considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 1049 1137 1229 1326 1434 1542 1662 A state of the table of the data is the dependent variable? Assign x or y to each variable. The independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? (x) is the year. The dependent variable (y) is the population. A state a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. B sible answer: The first few points appear to be linear, but the later points start a curve upward. For the data to be located. I use the table of data. B Find the first differences. B signer (1, 0, 12) B. Find the first differences. A signer (1, 0, 12) B. Find the tratios between y-values. A ll ratios round to 1.08. C what kind of function will best describe the data? Justify your conclusion. Exponential function, because the ratios between y-values are almost constant. Choose the letter for the best answer.	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios Use the graphs 1. a. What typ b. What con Graph A The 2. a. What typ b. What con The da 3. On the cool of a function	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 B20 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable? Assign x or y to each variable. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. 88, 92, 97, 108, 108, 120 b. Find the first differences. <u>4</u>, 5, 11, 0, 12 c. Find the third differences. <u>1</u>, 6, −11, 12 d. Find the tratios between <i>y</i>-values. <u>All ratios round to 1.08</u>. c. Find the third differences. <u>All ratios round to 1.08</u>. c. What kind of function will best describe the data? Justify your conclusion. Exponential function, because the ratios between <i>y</i>-values are almost constant. Chroose the letter for the best answer. 6. Predict the population of Lincoln Valley in 2012. 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios Use the graphe 1. a. What typ b. What coo Graph A The 2. a. What typ b. What cool of a function 3. On the cool of a function with evenly 4. On the cool	v Conclusions e is a pattern in real-ve the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 BSD Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The fown council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 1049 Population 2000-2006 The incloin Valley Population 2000-2006 The indupendent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable? Assign x or y to each variable. Ake a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. Make a scatter plot of the data. Do the data form a linear pattern? For the start a curve upward. For the data to be linear, the first differences. B, 92, 97, 108, 108, 120 Find the first differences. A, 5, 11, 0, 12 Find the ratios between y-values. All ratios round to 1.08. Chine third differences. All ratios round to 1.08. Chose the letter for the best answer. Choise the letter for the best answer. Chine the true for time best masues. Chine the true how on would best models the given Preduction will best describe the data? Justify your conclusion. 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios Use the graphs 1. a. What typ b. What con Graph A The 2. a. What typ b. What con The da 3. On the cool of a function with evenly 4. On the cool function tha	v Conclusions e is a pattern in real-ve the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced).	es 1–2. es 1–2. esented by Graph A? raw about the data set stant second differences stant second diffe evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 B20 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 1049 1137 1229 1326 1434 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable (x) is the year. The dependent variable? Assign x or y to each variable. (y) is the population. 2. Make a scatter plot of the data. Do the data form a linear pattern? For this to be true, explain what must be true about finite differences. B yeas, 17, 0, 12 c. Find the first differences. <u>4</u>, 5, 11, 0, 12 c. Find the third differences. <u>4</u>, 5, 11, 0, 12 c. Find the third differences. <u>4</u>, 5, 11, 0, 12 d. Find the ratios between y-values. <u>All ratios round to 1.08</u>. 4. What kind of function will best describe the data? Justify your conclusion. Exponential function, because the ratios between y-values are almost constant Choose the letter for the best answer. S. Which function best models the given data? A y = 01.9x + 932.1 B y = 3.1x² + 77.0x + 969.6 C y = 996.6x^{0 233} (H) 2650 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios Use the graphs 1. a. What typ b. What con Graph A The 2. a. What typ b. What con The da 3. On the cool of a function with evenly 4. On the cool function tha	v Conclusions e is a pattern in real-we the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced). Graph A s above for Exercis pe of function is repr nclusions can you dra ata set has constant ripacta plane at right n that constant first c	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	
 B20 Modeling Real-World Data The table shows the population of Lincoln Valley over the last 7 years. The town council is developing long range plans and is considering how the population might grow in the future if the considering how the population might grow in the future if the considering how the population 10409 1137 1229 1326 14341 1542 1662 1. What is the independent variable? What is the dependent variable? Assign x or y to each variable. The independent variable? (x) is the year. The dependent variable? Assign x or y to each variable. 1. What is the independent variable? (x) is the year. The dependent variable? Assign x or y to each variable. 1. What is the independent variable? (x) is the year. The dependent variable? Assign x or y to each variable. 1. What is the independent variable? (x) is the year. The dependent variable? for this to be true, explain what must be true about finite differences. 2. Use the table of data. 3. Use the table of data. a. Find the first differences. <u>4</u>, 5, 11, 0, 12 b. Find the second differences. <u>1</u>, 6, −11, 12 c. Find the ratios between y-values. <u>All ratios round to 1.08</u>. 4. What kind of function will best describe the data? Justify your conclusion. Exponential function, because the ratios between y-values are almost constant Chrose the letter for the best answer: a. Which function best models the given are 2012. A y = 101.9x + 932.1 F 2270 B y = 3.1x² + 77.0x + 969.6 C 2450 	9-6 Draw Sometimes there Often we can us Function Constant Differences/ Ratios Use the graphs 1. a. What typ b. What con Graph A The 2. a. What typ b. What con The da 3. On the cool of a function with evenly 4. On the cool function tha	v Conclusions a is a pattern in real-we be the pattern to draw Linear Constant first differences between y-values (x-values evenly spaced). Graph A s above for Exercise be of function is repro- nclusions can you dra at a set has constant r spaced x-values. rdinate plane at right in thas constant first c4, 6) and (0, 0).	vorld data that describ conclusions about the Quadratic Constant second differences between y-values (x-values evenly spaced).	Exponential Constant ratios between y-values (x-values evenly spaced).	Constant second differences between x-values (y-values evenly spaced).	