

Use with Lesson 9-6 Materials: paper, ruler, and pencil

In this lab you will examine the Periodic Table of Elements to determine if there is a relationship between the atomic number of an element and its atomic weight. Use only the first 25 elements for this lab.

Activity

Name

Below is the Periodic Table of Elements. The letter(s) in the center of each cell give the symbol for that element. The number above the symbol is the atomic number. The number below the symbol is the atomic weight of the element. Examine the Periodic Table and record the atomic weight under the atomic number in the table at the bottom of this page. Round the atomic weight to the nearest integer.

					PE	rioi	DIC C	HAI	rt c	DE .	THE	ELE	MEN	TS							INFOT
IA	IIA	IIIE	; IV	/B	YΒ	YIB	VIIB		VI			IB	IIB	IIIA	Ľ	٧A	٧A	V.	ΊA	VIIA	GASES
H 1.00797		_																		H 1.0079	He 4.0026
3 Li 6.939	Be													B 10.8	11 12	Č	N 14.00	67 15.	8 0 3934	F 18.390	10 Ne 20.183
11 Na 22.9898	12 Mg									_				13 A 26,98	15 28	14 Si 3.086	15 P 30.97	38 32	S.064	CI 35.453	18 Ar 39.948
19 K 39.102	Ca 40.08	Sc 44.95		2 1 .90	V 50.942	24 Čr 51.990	Mn 54.958		e C	0	28 Ni 58.71	Cu	30 Zn 65.37	G	a Ç	32 2.59	33 As 74.92	S 5	e 9.96	Br 79.905	83.80
80 80	38 Sr	39 Y 00.90			Nb 12.906	42 Mo 95.94		R1		h 305	Pd 106.4	Å0				50 5n	St		e 7.60	53 126.90	Xe
55 Cs 132.805	Ba	138.9		12 f 1 1	73 Та 80.948	W 183.85	Be 186.2	O:	s 7 s 1 2 18	7 r 2.2	Pt 195.09	79 Au	7 200.5	3 T	I F	82 Pb	83 Bi		20	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	+89 AC (227)	: P [2	04 }f	105 Db (262)	105 Sg	107 Bh (262)	100 H: (269	8 10 S N R (20)9 t 56)	110 ?	111 ? (272)	112 ?								
Numbers in preventivesis are mass numbers of most stable or most common issteps. * Lanthanide Series 50 59 60 61 62 63 64 65 66 67 68 69 70 71													71								
Atomic v conform Commiss	eights co to the 196 ion on Ah	mented to 3 values o unio Weigl	(the Vs.	140. † Act	2 140 12 140	.907 1 ieries	44.24	147)	5 M 150.35	151	U C	7.25	I D 58.924	162.50	164.93	0 16	7.26	168.93	4 173	D 1 8.04 1	.u 74.97
The grow here are Abstract	p designa the forme Service r	tions used r Chemica sumbers .	1	90 11 232.0		1 a 31) 2	U 38.03	93 Vp 237)	94 Pu (242)	9 A (2)		96 m 147]	97 Bk 247	98 Cf (249)	99 Es (254)		00 m 53)	101 Mc (256)		02 0 56) (103 Lr 257)
., 1										10				4-		10		0.1	00		04 07
#	1	2 3	4	5	6	/	8 8	10	11	12	13	14 1	15 16	17	18	19	20	21	22	23	24 25

AW

LESSON Algebra Lab **9-6** *Modeling Real-World Data* continued

Plot the points on the graph below. Label the horizontal axis as atomic number and the vertical axis as atomic weight. Count each square as 1 unit on the horizontal axis and 2 units on the vertical axis.

Try This

- 1. Does there appear to be a relationship between the atomic number and atomic weight for the twenty five elements that you graphed?
- 2. Is it possible to connect the data points with a straight line?
- 3. Draw the line on the graph. What is the slope of the line?
- 4. What does the slope represent?

Answer Key continued

LAB 9–6

Try This

- 1. Yes—it appears there is a pos. correllation in general
- 2. Yes—from the points I plotted—No
- 3. Approximately 2
- 4. It represents the rate of change in the atomic weight; for each increase of 1 in the atomic number, the atomic weight increases by 2.

TECH LAB 9-6

Try This

- **1.** III
- time; seconds; distance of object from CBR 2[™] motion detector; feet or meters
- **3.** Check students' drawings. (should be half of a parabola, concave up)
- 4. quadratic
- 5. Check students' answers.

Activity 2

- 1. Check students' drawings. (should be parabolic with increasing curvature)
- 2-3. Check students' drawings.
 - **4.** 0° is flat (ball can't roll); 90° is the same as a free-falling (dropping) ball