9A 9-1 Multiple Representations of Functions

Using Multiple Representations to Solve Problems

The table shows the sum of the interior angles of polygons and the number of sides of the polygons. Use a graph and an equation to find the sum of the interior angles of a 24-gon.

Step 1 Graph the data.

Number of sides	Sum of the angles (degrees)
3	180
4	360
5	540
6	720
7	900

The data appears to be _____.

Step 2 Write an equation to represent the data. Let y = the sum of the interior angles and x = the number of sides of the polygon.

 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{360 - \square}{\square - 3} = _$ Find the slope using any two points. $v - v_1 = m(x - x_1)$ Write point-slope form. $y - ___ = ___ (x - __)$ Substitute values into point-slope form. *y* = _____*x* - ____ Simplify. **Step 3** Evaluate the function for a polygon with 24 sides.

y = 180(____) - 360 Substitute x = 24. *y* = _____ Simplify.

The sum of the interior angles of a polygon with 24 sides is _____.

SECTION Ready To Go On? Problem Solving Intervention 9A 9-1 Multiple Representations of Functions

Often functions can be represented in a variety of ways. Use the method that is easiest for you.

A hot air balloon is descending from an altitude of 1000 feet at a rate of 8 feet per second. Create a table, equation, and graph to represent the hot air balloon's altitude, a, with relation to time, t. When will it reach the ground?

Understand the Problem

1. Describe the hot air balloon's descent.

Make a Plan

2. What do you need to determine?

Solve

3. Create a table. Let *t* equal time and *a* equal altitude.

	t (seconds)	0	1	2	3	4
	a (feet)	1000				
First diff	erences:	_	8			/

The first differences are _____, so a _____ model is appropriate.

- 4. Write an equation to model: "Altitude is equal to 1000 minus ______ feet per second."

Look Back

7. Check the intercepts by graphing the equation on your graphing calculator.

Г

SECTION Ready To Go On? Skills Intervention

9A 9-2 Piecewise Functions

Find these vocabulary words in Lesson 9-2 and the Multilingual Glossary.

Vocabulary	
piecewise function	step function
Evaluating a Piecewise F Evaluate each piecewise fund	unction to $x = -2$ and $x = 6$.
A. $f(x) = \begin{cases} 4x - 2 & \text{if } x < 6 \\ x^3 + 1 & \text{if } x \ge 6 \end{cases}$	
Evaluate the function at $x =$	= -2.
Because $-2 $ 6, use the formula of the formula of the second secon	ne rule for <i>x</i> 6.
$f(-2) = 4(-2) - __= _$	
Evaluate the function at $x =$	= 6.
Because 6 6, use the	rule for <i>x</i> 6.
$f(6) = 6^3 + ___ = ___$	
B. $f(x) = \begin{cases} 7 & \text{if } x \\ x^2 + 3x - 28 & \text{if } - \sqrt{x + 25} & \text{if } x \end{cases}$	$x \le -2$ - 2 < $x \le 6$ $x \ge 6$
Evaluate the function at $x =$	= -2.
Because -22, use	the rule for x
f(-2) =	
Evaluate the function at $x =$	= 6.
Because 6 6, use the	rule for
$f(6) = __+ 3(6) - __$. =
Graphing Piecewise Func Graph the piecewise function	tions $f(x) = \begin{cases} -1 & \text{if } x < 3 \\ 2x - 4 & \text{if } x \ge 3 \end{cases}$
Because the function is divided	at <i>x</i> =,
evaluate both branches of the f	unction at $x = $
Plot the point $(3, -1)$ with a/an	circle
and draw a horizontal ray to the	9
Substitute $x = 3$ into the function $2(3) - 4 = $	on $f(x) = 2x - 4$.
Plot the point (3,) with a/a	n circle
and draw a ray to the	with a slope of

4

X

≜*y*

2

4

2

-2

-4

-2

-4

SECTIONReady To Go On? Problem Solving Intervention9A9-2 Piecewise Functions

A piecewise function is a combination of one or more functions. If the function is constant for each interval in its domain, the function is called a step function.

Maureen drove from her house in the suburbs to her office in the city. She drove 10 minutes through town at an average speed of 30 mi/h, 30 minutes on the highway at an average speed of 65 mi/h, and 6 minutes in city traffic at an average speed of 15 mi/h. Write a piecewise function to represent Maureen's distance versus time. Then graph the function.

Understand the Problem

- 1. Maureen's trip can be described by how many steps? _____
- 2. What do you need to determine?

Make a Plan		Ra	te (mi/ŀ	1) ·	Time (h	ו)	Distanc	e (mi)
3. Make a table to organize the data. Use the distance	Through Town		30			_		
formula to find Maureen's rate for each leg of her	On the Highway	_			<u>1</u> 2			
anve.	In City Traffic	_			<u>1</u> 10			
Solve				1				
4. Graph the function.			40					
5. Write a linear function for	each leg.		30					
Town: <i>d</i> = 0.5		ie (mi)	25					
Highway: $d = \underline{\qquad} t - \overline{}$	<u>35</u> 6	Distanc	15					
City: <i>d</i> = <i>t</i> +			5					
The function rule is:				****	+++++++++++++++++++++++++++++++++++++++		++++	···
$\int t \text{ if } 0 \leq t < 10$)		Ŧ	10	20 Time	30 (min)	40	50
$d(t) = \left\{ \frac{13}{12}t - \dots \right\}$ if 10 <	$t \le 40$							
$\left \frac{1}{4}t + _$ if 40 <	<i>t</i> ≤ 46							

Look Back

6. Use your graph to find out how far Maureen has traveled after 5 min: _____

20 min: ______ 45 min: _____ Does your function make sense? _____

9A 9-3 Transforming Functions

Transforming Piecewise Functions

Given $f(x) = \begin{cases} 6x - 8 & \text{if } x \le 2 \\ x^2 & \text{if } x > 2 \end{cases}$, write the rule for h(x), a horizontal

shift of f(x) 3 units left.

Replace every *x* in the function with x +_____.

$$h(x) = f(x+3) = \begin{cases} 6(\underline{\qquad} + \underline{\qquad}) - 8 & \text{if } (x+3) \le 2\\ (\underline{\qquad} + 3)^2 & \text{if } (x+3) > 2 \end{cases}$$
$$h(x) = \begin{cases} \underline{\qquad} + 10 & \text{if } x \le \underline{\qquad}\\ x^2 + \underline{\qquad} + 9 & \text{if } x > \underline{\qquad} \end{cases}$$
Simplify.

Identifying Intercepts

Identify the x- and y-intercepts of f(x). Without graphing g(x), identify its x- and y-intercepts.

A.
$$f(x) = \frac{1}{4}x + 5$$
 and $g(x) = 2f(x)$
 $f(0) = \frac{1}{4}(___] + 5 = ___$ Find the *y*-intercept of the original function.
 $__= \frac{1}{4}x + 5$ Find the *x*-intercept of the original function.
 $-5 = \frac{1}{4}x$
 $__= x$
The *y*-intercept of $f(x)$ is _____ and the *x*-intercept is _____.
 $g(x)$ is a ______ of $f(x)$ by a factor of _____.
The *y*-intercept of $g(x)$ is _____ and the *x*-intercept is _____.
Check your answer: Graph $f(x)$ and $g(x)$ to verify the intercepts.
B. $f(x) = x^2 - 8$ and $g(x) = -f(5x)$
 $f(0) = __2^2 - 8 = __$ Find the *y*-intercept of the original function.
 $__= x^2 - 8$ Find the *x*-intercept of the original function.
 $x^2 = 8$ $x = \sqrt{8}$ The *y*-intercept of $f(x)$ is _____ and the *x*-intercept(s) is/are _____.
 $g(x)$ is a _______ of $f(x)$ across the ______ axis.
The *y*-intercept of $g(x)$ is ______ and the *x*-intercept(s) is/are _____.
Check your answer: Graph $f(x)$ and $g(x)$ to verify their intercepts.

9A

SECTION Ready To Go On? Quiz

9-1 Multiple Representations of Functions

1. A plane is descending from an altitude of 32,000 feet at a rate of 25 feet per second. Create a table and an equation to represent the plane's altitude, *a*, with relation to time, *t*.

<i>t</i> (s)	0	1	2	3	4
<i>a</i> (ft)					

2. The population of a certain bacteria at different times is shown in the table.

Time (hours)	0	1	2	3	4
Number of bacteria	200	600	1800	5400	16,200

- a. Find an appropriate model for the population of bacteria.
- b. Assuming the growth in population continues, when will the bacteria's population equal 1,312,200?

9-2 Piecewise Functions

3. Graph the function $f(x) = \begin{cases} 3x - 1 & \text{if } x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$.

4. The cost to park in a parking garage in Boston is \$5 for the first 4 hours and \$2 for each additional hour. Sketch a graph of the cost of parking in the garage for 0 to 6 hours, and write a piecewise function for the graph.

Name _			Da	ate	 Class	

Ready To Go On? Quiz continued SECTION 9A

Write a piecewise function for each graph.

y-intercepts(s) of f(x) _____

x-intercept(s) of g(x) _____

x-intercept(s) of g(x)

y-intercepts(s) of g(x) _____

y-intercepts(s) of g(x) _____

9. Given f(x) = |2x| and g(x) = -f(x) - 1, graph g(x).

Ready To Go On? Enrichment SECTION 9A

Exploring Step Functions

A step function is a special type of piecewise function whose graph resembles steps, not lines or curves. One common step function is the greatest integer function, or rounding-down function. Given any number x, the greatest integer function is defined as:

f(x) = the greatest integer less than or equal to x.

Find f(x) for the following values of x.

1. 4	 2. 8.7	
3. $\sqrt{3}$	 4. 2.25	

- 5. The domain of the greatest integer function is the set of Real numbers. What is the range of the greatest integer function?
- 6. Graph the greatest integer function for all values of *x* such that $-5 \le x < 5$.

- 7. The cost of a telephone call between Boston and Paris is \$0.90 for the first minute and \$0.42 for each additional minute or portion of a minute.
 - a. Use the greatest integer function to model the cost of a call, C.
 - b. How much does an 8 minute and 25 second phone call cost?

9B 9-4 Operations with Functions

Find this vocabulary word in Lesson 9-4 and the Multilingual Glossary.

Evaluating Functions

Given f(x) = 6x - 5, $g(x) = x^2 + 6x - 27$, and $h(x) = \frac{12}{x+9}$, find each function or value.

A.
$$(g - f)(x)$$

 $(g - f)(x) = _$ + 6x - 27 - (_ - 5) = _ - 22

B. (*fh*)(−1)

C. $\frac{h}{q}(x)$

 $\frac{h}{g}(x) = \frac{h(x)}{\square(x)} = \frac{\frac{12}{x+9}}{\boxed{}}$

 $=\frac{12}{(x+)(x-)}$

Substitute function rules. Combine like terms.

Substitute function rules.

Substitute -1 for x.

Simplify.

Substitute function rules.

Factor completely. Note that $x \neq -9$ or 3.

Simplify the fraction.

 $= \frac{1}{(x + b)^2 (x - b)}$ where $x \neq -9$ or ____. Divide out common factors and simplify.

D. *g*(*h*(−3))

$$h(-3) = \frac{12}{2} = 2$$

 $g(2) = 2^{2} + 6(2) - 27 = 2$

 $=\frac{\frac{12}{x+9}}{(x+3)(x-3)}\cdot\frac{x+9}{x+3}$

Find h(-3).

154

Substitute your result for h(-3) into g.

Holt Algebra 2

.

composition of functions

Vocabulary

Name	Date	Class

Ready To Go On? Problem Solving Intervention 9B 9-4 Operations with Functions

You can multiply functions by following this rule: $(fg)(x) = f(x) \cdot g(x)$.

During a sale, a shoe store is selling boots for 25% off. Preferred customers also receive an additional 10% off. Write a composite function to represent the final cost of a pair of boots that originally cost c dollars. Then find the cost of a pair of boots originally priced at \$92 that a preferred customer wants to buy.

Understand the Problem

1. Describe the shoe store's sale.

Make a Plan

- 2. What do you need to determine?
- **3.** Write a function *P* for the final price of boots after the sale.

P(*c*) = _____*c*

4. Write a function *D* for the price after applying the preferred customer discount.

D(c) = _____c

Solve

5. Find the composition P(D(c)).

 $P(D(c)) = P(\underline{\qquad} c)$ Substitute the rule of *D* into *P*. $= \underline{\qquad} (0.90c)$ Apply the rule for *P*. $= \underline{\qquad} c$ Simplify.

6. Find the cost of the boots that originally cost \$92.

Look Back

7. To check your answer, find 25% of \$92: Sale savings = 25%(92) = _____

Then subtract the savings from \$92 and take 10% of that value.

Preferred customer discount = 10%(92 - savings) = _____

- Cost = 92 sale savings preferred customer discount = _____
- 8. Does your solution in Exercise 6 make sense?

9B 9-5 Functions and Their Inverses

Find these vocabulary words in Lesson 9-5 and the Multilingual Glossary.

Vocabulary

one-to-one function

horizontal-line test

Using the Horizontal-Line Test and Writing Rules for Inverses Find the inverse of each function. Then state the domain and range of the inverse.

A. $f(x) = 7 - \sqrt{x+4}$

Step 1 Graph the function on your graphing calculator.

Does it pass the horizontal-line test? _____ Therefore, the inverse

a function.

Step 2 Find the inverse.

 $\underline{\qquad} = 7 - \sqrt{x+4}$ Rewrite the function using y instead of f(x). $= 7 - \sqrt{+4}$ Interchange x and y. Note the range restriction $y \ge _$ ____. $\underline{\qquad \qquad }^{2} = -\sqrt{\underline{\qquad }} + 4$ Isolate the radical. $\underline{\qquad }^{2} = y + \underline{\qquad }$ Square both sides Square both sides of the equation. - 14x + - y + 4Multiply. $v = x^2 - 14x +$ _____ Solve for *y*. The domain of the inverse is the _____ of f(x): _____. The range of the inverse is the _____ of f(x): _____. **B.** $f(x) = \frac{8-6x}{5}$ **Step 1** Graph the function on your graphing calculator. Does it pass the horizontal-line test? _____ Therefore, the inverse _____ a function. **Step 2** Find the inverse. $\underline{\qquad} = \frac{8-6x}{5}$ Rewrite the function using y instead of f(x). $\underline{\qquad}=\frac{8-6}{5}$ Interchange x and y. *y* = _____ Solve for y. The domain of the inverse is: $\{x \mid x \in __\}$ and its range is: $\{y \mid y \in __\}$.

SECTION Ready To Go On? Skills Intervention 9B 9-6 Modeling Real-World Data

Identifying Models by Using Constant Ratios or Differences Use finite differences or ratios to determine which parent function best models each set of data.

•	x	1	2	3	4	5
А.	у	11	14	9	-4	-25

Are the x-values evenly spaced? _____

Check the first differences between y-values: _____, -5, _____,

Check the second differences between y-values: _____, ___, -8

Check the ratios between y-values:

Because the ______ differences are constant,

a/an _____ model best models the data set.

D	x	-3	0	3	6	9
D.	У	56	7	0.875	0.109	0.014

Are the x-values evenly spaced?

Check the first differences between y-values: , -6.125,

Check the second differences between y-values: _____, 5.359, _____

Check the ratios between *y*-values: _____, 0.125, _____, ____

Because the _____ are constant, a/an _____ model best models the data set.

c	x	6	7	8	9	10
U.	У	42.3	44.1	45.9	47.7	49.5

Are the x-values evenly spaced? Check the first differences between y-values: 1.8, _____, ____, _____ Check the second differences between *v*-values: Because the _____ are constant, a/an _____ model best models the data set.

SECTION Ready To Go On? Problem Solving Intervention 9.6 Modeling Real-World Data

To model data in a real-world application, look for a pattern.

The table shows the estimated population of a Southwestern town. Using time as the independent variable and 1980 as a reference year, find a model that best fits the data. Use your model to predict the town's population in the year 2030.

Year	1980	1985	1990	1995	2000	2005
Population	1840	2208	2650	3180	3815	4617

Understand the Problem

1. Describe the town's population.

Make a Plan

2. What do you need to determine?

Solve

3. Are the year	ars evenly spaced?	
Check the	first differences:	
Check the	second differences:	
Check the	ratios between population values:	

Because the ______ are constant, a/an _____ model is best.

4. Use your graphing calculator to perform a/an _____ regression.

5. A function that models the data is:

 $f(t) = 1837.17(___)^t$

6. Solve for the town's population in the year 2030. Let t = 1.

Look Back

7. To check your model, let t = 0, 5, 10, 15, 20, and 25 and see if your function values using the function in Exercise 5 match the population figures in the table.

8. Does your model seem reasonable? _____

SECTION Ready To Go On	? Quiz
9-4 Operations with Function Given $f(x) = x + 1$, $g(x) = x^2 - 11$ or value.	s $x + 18$, and $h(x) = \frac{10}{x}$, find each function
1. (<i>g</i> - <i>f</i>)(4)	2. $\left(\frac{h}{g}\right)$ (5)
3. (<i>fg</i>)(<i>x</i>)	4. <i>h</i> (<i>f</i> (<i>x</i>))
 5. a. Find (g ∘ f)(x) b. What is the domain of the com 	 nposite function?
6. Mike imports lemon juice from Sid a 15% import tax and 50 euros for a composite function for the total	cily. The cost of a case of lemon juice includes or shipping. Given 1 dollar = 0.83 euros, write cost of a case of lemon juice in dollars, if the

cost of a case is c euros,.

9-5 Functions and Their Inverses

State whether the inverse of each relation is a function.

Name	Date	Class

SECTION Ready To Go On? Quiz continued

9B

Write the rule for the inverse of each function. Then state the domain and range of the inverse.

9.
$$f(x) = (8x + 4)^2$$
 10. $g(x) = \frac{9}{x - 7}$

9-6 Modeling Real-World Data

11. Use finite differences or ratios to determine which parent function would best model this set of data.

t	0	2	4	6	8
а	-5	5	31	73	131

12. The table shows the years that a park ranger has been monitoring the giraffe population in a game park in Namibia and the size of the giraffe population. Using time as the independent variable, find a model for the size of the giraffe population.

Time (year)	Giraffe
5	72
6	83
7	96
8	110
9	127

