Chapter 8 (p. 569, 8-1)	constant of variation: The constant <i>k</i> in direct, inverse, joint, and combined variation equations.
constant of variation	y = 5x \uparrow constant of variation
Chapter 8 (p. 569, 8-1)	direct variation: A linear relationship between two variables, x and y, that can be written in the form $y = kx$, where k is a nonzero constant.
direct variation	y = 2x
Chapter 8 (p. 593, 8-4)	discontinuous function: A function whose graph has one or more jumps, breaks, or holes.
discontinuous function	
Chapter 8 (p. 600, 8-5)	extraneous solution: A solution of a derived equation that is not a solution of the original equation.
extraneous solution	To solve $\sqrt{x} = -2$, square both sides; $x = 4$. <i>Check</i> $\sqrt{4} = -2$ is false; so 4 is an extraneous solution.

Chapter 8 (p. 570, 8-1)	inverse variation: A relationship between two variables, x and y, that can be written in the form $y = \frac{k}{x}$, where k is a nonzero constant and $x \neq 0$.
Chapter 8 (p. 628, 8-8) radical equation	radical equation: An equation that contains a variable within a radical. $\sqrt{x+3} + 4 = 7$
Chapter 8 (p. 611, 8-6) rational exponent	rational exponent: An exponent that can be expressed as $\frac{m}{n}$ such that if <i>m</i> and <i>n</i> are integers, then $b^{\frac{m}{n}} = \sqrt[n]{b^m} = (\sqrt[n]{b})^m$. $4^{\frac{3}{2}} = \sqrt{4^3} = \sqrt{64} = 8$ $4^{\frac{3}{2}} = (\sqrt{4})^3 = 2^3 = 8$