East Practice A 8-3 Solving Radical Equations and Inequalities

Rewrite each equation to isolate the radical. The first one is done for you.

1. $\sqrt{x} - 6 = 0$ $\frac{+6}{\sqrt{x}} = 6$ **2.** $8 + \sqrt{3x} - x = 0$ **3.** $\sqrt{2x + 1} - 17 = 3x$

Identify to what power each equation must be raised in order to solve. Then solve. The first one is done for you.

4. $\sqrt[3]{x} = 4$ **5.** $\sqrt[4]{3x} = 12$ **6.** $\sqrt[3]{x+1} = 4$ **2**; $(\sqrt[2]{x}^2) = 4^2 = 16$

Solve each equation ro inequality. Then identify any extraneous solutions. The first one is done for you.

7.
$$2\sqrt{x+2} = 4$$

 $\frac{2\sqrt{x+2}}{2} = \frac{4}{2}$
 $\sqrt{x+2} = 2$
 $(\sqrt{x+2})^2 = 2^2$
 $x+2 = 4$
 $x = 2$, no extraneous roots

Solve each equation or inequality.

9. $\sqrt{x+2} = 5$ **10.** $(x+1)^{\frac{1}{3}} = 3$

11. $\sqrt{2x} - 6 < 0$

12. $\sqrt{3x+1} \ge 8$

Solve.

13. Ainsley and Ben each solve the inequality $\sqrt{x+3} + 5 \le 10$. Ainsley's solution is $x \le 22$. Ben's solution is $-3 \le x \le 22$. Why are their solutions different? Which is correct?

LESSON Practice A 8-8 Solving Radical Equations and Inequalities

Rewrite each equation to isolate the radical. The first one is done for you.

2. 8 + $\sqrt{3x}$ - x = 0 **1.** $\sqrt{x} - 6 = 0$ **3.** $\sqrt{2x+1} - 17 = 3x$ +6 +6 $\sqrt{3x} = x - 8$ $\sqrt{2x+1} = 3x + 17$ $\sqrt{\mathbf{x}} = \mathbf{6}$

Identify to what power each equation must be raised in order to solve. Then solve. The first one is done for you.

 $6\sqrt[3]{x+1} = 4$ **4**. $\sqrt[2]{x} = 4$ 5. $\sqrt[4]{3x} = 12$ 4; $x = \frac{69}{2}$ 2; $\left(\sqrt[2]{x^2}\right) = 4^2 = 16$ 3; *x* = 63

Solve each equation ro inequality. Then identify any extraneous solutions. The first one is done for you.

$2\sqrt{x+2}=4$	8. $\sqrt{x+3} = x-3$
$\frac{2\sqrt{x+2}}{2}=\frac{4}{2}$	
$\sqrt{\mathbf{x}+2}=2$	
$\left(\sqrt{x+2}\right)^2 = 2^2$	
x + 2 = 4	x = 1, x = 6; x = 1 is an
x = 2, no extraneous roots	extraneous solution.

10. $(x + 1)^{\frac{1}{3}} = 3$ 9. $\sqrt{x+2} = 5$ x = 23*x* = 26 **12.** $\sqrt{3x+1} \ge 8$ **11.** $\sqrt{2x} - 6 < 0$ $0 \le x < 18$ $x \ge 21$

Solve.

13. Ainsley and Ben each solve the inequality $\sqrt{x+3} + 5 \le 10$. Ainsley's solution is $x \le 22$. Ben's solution is $-3 \le x \le 22$. Why are their solutions different? Which is correct?

Ben's solution is correct. Ainsley forgot that the radicand cannot be negative.