Name _

TEKS 2A.9.A Problem Solving B-7 Radical Functions

On Earth the distance, *d*, in kilometers that one can see to the horizon is a function of altitude, *a*, in meters, and can be found using the function $d(a) = 3.56\sqrt{a}$. To find the corresponding distance to the horizon on Mars, the function must be stretched horizontally by a factor of about $\frac{9}{5}$.

- **1. a.** Write the function that corresponds to the given transformation.
 - **b.** Use a graphing calculator to graph the function and the parent function. Sketch both curves on the coordinate plane.
 - **c.** Use your graph to determine the approximate distance to the horizon from an altitude of 100 meters:

Choose the letter for the best answer.

2. Which equation represents the radius of a sphere as a function of the volume of the sphere?

A
$$r = \sqrt[3]{\frac{3\pi}{4V}}$$

B $r = \sqrt[3]{\frac{3V}{4\pi}}$
C $r = \sqrt[3]{\frac{4V}{3\pi}}$
D $r = \sqrt[3]{\frac{4\pi}{3V}}$

4. Harry made a symmetrical design by graphing four functions, one in each quadrant. The graph of which function is in the third quadrant?

A
$$f(x) = 4\sqrt{x}$$

B $f(x) = 4\sqrt{-x}$
C $f(x) = -4\sqrt{x}$
D $f(x) = -4\sqrt{-x}$

- 6. The hypotenuse of a right isosceles triangle can be written $H = \sqrt{2x^2}$, where *x* is the length of one of the legs. Which function models the hypotenuse when the legs are lengthened by a factor of 2?
 - **A** $H = \sqrt{2x^2} + 2$ **C** $H = \sqrt{4x^2}$ **B** $H = \sqrt{2x^2} + 4$ **D** $H = \sqrt{8x^2}$

- **3.** Alice graphed a function that is found only in the first quadrant. Which function could she have used?
 - **A** $f(x) = \sqrt{x+2}$ **C** $f(x) = \sqrt{x}+2$
 - **B** $f(x) = -\sqrt{x}$ **D** $f(x) = \sqrt{x-2}$
- **5.** The side length of a cube can be represented by $s = \sqrt{\frac{T}{6}}$, where *T* is the surface area of the cube. What transformation is shown by $s = \sqrt{\frac{T}{3}}$?
 - A Horizontal compression by a factor of 0.5
 - **B** Horizontal stretch by a factor of 2
 - C Vertical compression by a factor of 0.5
 - D Vertical stretch by a factor of 2

TEKS 2A.9.A

Problem Solving

8-7
Radical Functions

Name

On Earth the distance, *d*, in kilometers that one can see to the horizon is a function of altitude, *a*, in meters, and can be found using the function $d(a) = 3.56\sqrt{a}$. To find the corresponding distance to the horizon on Mars, the function must be stretched horizontally by a factor of about $\frac{9}{5}$.

1. a. Write the function that corresponds to the given transformation.

$$d(a) = 3.56 \sqrt{\frac{5}{9}}a$$

- **b.** Use a graphing calculator to graph the function and the parent function. Sketch both curves on the coordinate plane.
- c. Use your graph to determine the approximate distance to the horizon from an altitude of 100 meters:

on Earth	36 km
on Mars	27 km

Choose the letter for the best answer.

2. Which equation represents the radius of a sphere as a function of the volume of the sphere?

A
$$r = \sqrt[3]{\frac{3\pi}{4V}}$$

B $r = \sqrt[3]{\frac{3V}{4\pi}}$
C $r = \sqrt[3]{\frac{4V}{3\pi}}$
D $r = \sqrt[3]{\frac{4\pi}{3V}}$

4. Harry made a symmetrical design by graphing four functions, one in each quadrant. The graph of which function is in the third quadrant?

A
$$f(x) = 4\sqrt{x}$$

B $f(x) = 4\sqrt{-x}$
C $f(x) = -4\sqrt{x}$
D $f(x) = -4\sqrt{-x}$

- 6. The hypotenuse of a right isosceles triangle can be written $H = \sqrt{2x^2}$, where *x* is the length of one of the legs. Which function models the hypotenuse when the legs are lengthened by a factor of 2?
 - **A** $H = \sqrt{2x^2} + 2$ **C** $H = \sqrt{4x^2}$ **B** $H = \sqrt{2x^2} + 4$ **D** $H = \sqrt{8x^2}$

Class

3. Alice graphed a function that is found only in the first quadrant. Which function could she have used?

Date

A
$$f(x) = \sqrt{x+2}$$
 (**C**) $f(x) = \sqrt{x} + 2$
B $f(x) = -\sqrt{x}$ (**D** $f(x) = \sqrt{x-2}$

- 5. The side length of a cube can be represented by $s = \sqrt{\frac{T}{6}}$, where *T* is the surface area of the cube. What transformation is shown by $s = \sqrt{\frac{T}{3}}$?
 - A Horizontal compression by a factor of 0.5
 - **B** Horizontal stretch by a factor of 2
 - C Vertical compression by a factor of 0.5
 - **D** Vertical stretch by a factor of 2