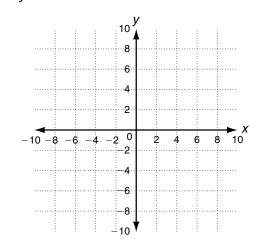

Practice C

8-7 Radical Functions


Graph each function or inequality.

1.
$$g(x) = \frac{1}{2}\sqrt[3]{x} - 3$$

a. Identify the domain and range.

2.
$$y \ge 4\sqrt{x+2} - 6$$

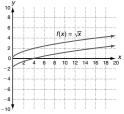
a. Describe the solution region.

Use the description to write the square root function g.

- **3.** The parent function $f(x) = \sqrt{x}$ is compressed vertically by a factor of $\frac{1}{4}$, reflected across the *x*-axis, and translated 6 units up.
- **4.** The parent function $f(x) = \sqrt{x}$ is translated 8 units left, reflected across the *y*-axis, and stretched horizontally by a factor of 3.

Solve.

- **5.** The frequency, f, in Hz, at which a simple pendulum rocks back and forth is given by $f = \frac{1}{2\pi} \sqrt{\frac{g}{I}}$, where g is the strength of the gravitational field at the location of the pendulum, and I is the length of the pendulum.
 - **a.** Find the frequency of a pendulum whose length is 1 foot and where the gravitational field is approximately 32 ft/s².
 - **b.** The strength of the gravitational field on the moon is about $\frac{1}{6}$ as strong as on Earth. Find the frequency of the same pendulum on the moon.


LESSON Practice A

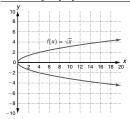
8-7 Radical Functions

Graph each function.

1. $q(x) = \sqrt{x} - 2$

x	g (x)	(x, g(x))
0	$\sqrt{0} - 2 = -2$	(0, -2)
1	$\sqrt{1} - 2 = -1$	(1, -1)
4	$\sqrt{4}-2=0$	(4, 0)
9	$\sqrt{9} - 2 = 1$	(9, 1)
16	$\sqrt{16} - 2 = 2$	(16, 2)

a. Describe the transformation from the parent function


Translation 2 units

b. Identify the domain and range.

OH.	
down	
Domain: $\{x \mid x \ge 0\}$;	
range: $\{y \mid y \ge -2\}$	
V	

a. Complete the table of values, then graph

complete are table of values, alon grapm				
x	g(x)	(x, g(x))		
0	$-\sqrt{0} = 0$	(0, 0)		
1	$-\sqrt{1} = -1$	(1, -1)		
4	$-\sqrt{4} = -2$	(4, -2)		
9	$-\sqrt{9} = -3$	(9, -3)		
16	$-\sqrt{16} = -4$	(16, -4)		
	x 0 1 4 9	$ \begin{array}{c cccc} x & g(x) \\ 0 & -\sqrt{0} = 0 \\ 1 & -\sqrt{1} = -1 \\ 4 & -\sqrt{4} = -2 \\ 9 & -\sqrt{9} = -3 \end{array} $		

b. Describe the transformation from the parent function

Reflection across the x-axis

c. Identify the domain and range.

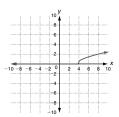
Domain: $\{x \mid x \ge 0\}$;	
range: $\{y \mid y \leq 0\}$	

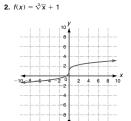
3. Dale wants to horizontally stretch the function $f(x)=\sqrt{x+5}$ by a factor of 3. He writes the function $f(x)=\sqrt{3(x+5)}$. Is he correct? If not, what is the correct function?

No;
$$g(x) = \sqrt{\frac{1}{3}(x+5)}$$

Copyright © by Holt, Rinehart and Winston All rights reserved.

51


Holt Algebra 2


Practice B

8-7 Radical Functions

Graph each function, and identify its domain and range

1 $f(\mathbf{y}) = \sqrt{\mathbf{y} - \mathbf{A}}$

 $\{x \mid x \geq$ Domain:

 $\{y\mid y\geq 0\}$ Range: _

all real numbers all real numbers

Using the graph of $f(x) = \sqrt{x}$ as a guide, describe the transformation.

- **3.** $g(x) = 4\sqrt{x+8}$
- Vertical stretch by a factor of 4 and translate 8 units left
- **4.** $g(x) = -\sqrt{3x} + 2$

Reflection across the x-axis, horizontal compression by a factor of $\frac{1}{2}$, and translate 2 units up

Use the description to write the square root function g.

- **5.** The parent function $f(x) = \sqrt{x}$ is reflected across the y-axis, vertically stretched by a factor of 7, and translated 3 units down.
- $g(x) = 7\sqrt{-x} 3$
- **6.** The parent function $f(x) = \sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the x-axis.

7. For a gas with density, n, measured in atoms per cubic centimeter, the average distance, d, between atoms is given by $d = \left(\frac{3}{4\pi n}\right)^{\frac{1}{3}}$. The gas in a certain region of space has a density of just 10 atoms per cubic centimeter. Find the average distance between the atoms in that region of space.

> Note that x and y have only nonnegative values.

The domain is $\{x \mid x \ge -3\}$. The range is $\{y \mid y \ge 0\}$.

0.29 cm

Copyright © by Holt, Rinehart and Winston All rights reserved.

The range is $\{y \mid y \ge 0\}$.

Graph: $f(x) = \sqrt{x+3}$

-3

-2

6

Reteach

8-7 Radical Functions

The domain of $f(x) = \sqrt{x}$ is $\{x \mid x \ge 0\}$.

The square root function, $f(x) = \sqrt{x}$, is a radical function.

You can make a table of values to graph a radical function.

 $f(x) = \sqrt{x+3}$

 $f(-3) = \sqrt{-3+3} = \sqrt{0} = 0$

 $f(-2) = \sqrt{-2+3} = \sqrt{1} = 1$

 $f(1) = \sqrt{1+3} = \sqrt{4} = 2$

 $f(6) = \sqrt{6+3} = \sqrt{9} = 3$

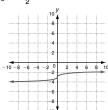
52

(x, f(x))

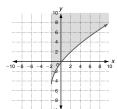
(-3, 0)

(-2, 1)

(1, 2)

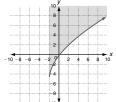

(6.3)

Holt Algebra 2


Practice C

8-7 Radical Functions Graph each function or inequality.

1. $g(x) = \frac{1}{2}\sqrt[3]{x} - 3$


2. $y \ge 4\sqrt{x+2} - 6$

a. Identify the domain and range.

Domain: all real numbers;

range: all real numbers

a. Describe the solution region.

The region above the curve

including the line where $x \ge -2$

Use the description to write the square root function g.

3. The parent function $f(x) = \sqrt{x}$ is compressed vertically by a factor of $\frac{1}{4}$, reflected across the x-axis, and translated 6 units up.

4. The parent function $f(x) = \sqrt{x}$ is translated 8 units left, reflected across the y-axis, and stretched horizontally by a factor of 3.

5. The frequency, f, in Hz, at which a simple pendulum rocks back and forth is given by $f = \frac{1}{2\pi} \sqrt{\frac{g}{I}}$, where g is the strength of the gravitational field at the location of the pendulum, and \emph{I} is the length of the pendulum.

53

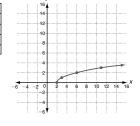
a. Find the frequency of a pendulum whose length is 1 foot and where the gravitational field is approximately 32 ft/s².

0.90 Hz

0.37 Hz

b. The strength of the gravitational field on the moon is about $\frac{1}{6}$ as strong as on Earth. Find the frequency of the same pendulum on the moon.

Holt Algebra 2


Graph the function. Identify its domain and range.

1. $f(x) = \sqrt{x-2}$

X	$f(x) = \sqrt{x-2}$	(x, f(x))
2	0	(2, 0)
3	1	(3, 1)
6	2	(6, 2)
11	3	(11, 3)

 $\{x | x \ge 2\}$

 $\{y|y\geq 0\}$ Range:

First choose the value of x

First choose the value of x

that make perfect squares.

2 4 6 8 10

Copyright © by Holt, Rinehart and Winston. All rights reserved.

54

Holt Algebra 2

Copyright © by Holt, Rinehart and Winston. All rights reserved.