

Using the graph of $f(x) = \sqrt{x}$ as a guide, describe the transformation.

- **3.** $g(x) = 4\sqrt{x+8}$
- **4.** $g(x) = -\sqrt{3x} + 2$

Use the description to write the square root function g.

- **5.** The parent function $f(x) = \sqrt{x}$ is reflected across the *y*-axis, vertically stretched by a factor of 7, and translated 3 units down.
- **6.** The parent function $f(x) = \sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the *x*-axis.

Solve.

7. For a gas with density, *n*, measured in atoms per cubic centimeter, the average distance, *d*, between atoms is given by $d = \left(\frac{3}{4\pi n}\right)^{\frac{1}{3}}$. The gas in a certain region of space has a density of just 10 atoms per cubic centimeter. Find the average distance between the atoms in that region of space.

Using the graph of $f(x) = \sqrt{x}$ as a guide, describe the transformation.

3. $g(x) = 4\sqrt{x+8}$ 4. $g(x) = -\sqrt{3x} + 2$ Wertical stretch by a factor of 4 and translate 8 units left Reflection across the x-axis, horizontal compression by a factor of $\frac{1}{3}$, and translate 2 units up

Use the description to write the square root function g.

5. The parent function $f(x) = \sqrt{x}$ is reflected across the *y*-axis, vertically stretched by a factor of 7, and translated 3 units down.

 $q(x) = 7\sqrt{-x} - 3$

6. The parent function $f(x) = \sqrt{x}$ is translated 2 units right, compressed horizontally by a factor of $\frac{1}{2}$, and reflected across the *x*-axis. $g(x) = -\sqrt{2(x-2)}$

Solve.

7. For a gas with density, *n*, measured in atoms per cubic centimeter, the average distance, *d*, between atoms is given by $d = \left(\frac{3}{4\pi n}\right)^{\frac{1}{3}}$. The gas in a certain region of space has a density of just 10 atoms per cubic centimeter. Find the average distance between the atoms in that region of space.

0.29 cm