Name	Date	Class	
------	------	-------	--

LESSON Reading Strategy

8-6 Use a Concept Map

Vocabulary	Relationship
<i>n</i> is called the index of the expression	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
The number or expression	Example:
inside the radical sign <i>a</i> is called the radicand . $\sqrt[n]{a} =$	$-\frac{1}{\sqrt{35^6}} = 5^{\frac{6}{3}} = 5^2 = 25$
Product Property	Quotient Property
$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Example: $\sqrt[3]{216} = \sqrt[3]{27} \cdot \sqrt[3]{8} = 3 \cdot 2 = 6$	Example: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$

Solve.

- **1.** Explain how to simplify $8^{\frac{2}{3}}$.
- **2.** Identify the radicand in the expression $\sqrt[7]{7x-4}$.
- **3.** Identify the property you would use to solve $\sqrt{\frac{49}{x^4}}$. Then solve.

Write each expressi	on as a radical and simplify.		
4. 9 ¹ / ₂	5. 8 ^{1/3}	6. $(x^8)^{\frac{1}{4}}$	
7. 25 ^{³/₂}	8. $(8x^6)^{\frac{1}{3}}$	9. $\left(\frac{4}{9}\right)^{\frac{3}{2}}$	

	h						
	Expressions an	d Rational Exp	ponents (cont	tinued)	8-6 Using Rational Exp	ponents	
					Rational exponents make it possible		
The <i>n</i> th root of a num		ed using a rational,	or fractional,		Consider the simple operation of multipl multiply the radical expression $\sqrt{2}$.		
exponent: $\sqrt[n]{a} = a^{\frac{1}{n}}$.	This	means to take the n	th root of a.		answer is no, or at least it is very diff		
Examples: $121^{\frac{1}{2}} = V$	121 = 11				may be done as follows: $\sqrt{2} \cdot \sqrt[3]{2} = 2^{\frac{1}{2}} \cdot 2^{\frac{1}{3}} = 2^{\frac{1}{2} + \frac{1}{3}}$	$a^{\frac{3}{2}+\frac{2}{2}}$ $a^{\frac{5}{2}}$ $a^{\frac{6}{2}}$	6/20
$216^{\frac{1}{3}} = \sqrt[3]{10}$							
$256^{\frac{1}{4}} = \sqrt[4]{1}$	256 = 4				When you look at the radicals, it may last expressions are equal. The oper		
Powers and roots can	be expressed using	rational exponents a	$a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}.$		the result. Other fraction operations a exponents instead of radicals.	are possible when using	rational
		/	1		exponents instead of radicals. $\sqrt[3]{2} \cdot \sqrt[5]{3^2} = 2^{\frac{1}{3}} \cdot 3^{\frac{2}{5}} = 2^{\frac{5}{15}} \cdot 3^{\frac{5}{15}}$	$a_{15}^{6} = (a_{15}^{5} a_{15}^{6})^{\frac{1}{15}} = \frac{15}{2}$	0 ⁶ - ¹⁵ /00 000
Examples: $64^{\frac{2}{3}} = (\sqrt[3]{64})^2$. 2		enominator is the ro				• • • • • • • • • • • • • • • • • • • •
01 (101)	$=4^2 = 16$ $\overline{-32}^4 = (-2)^4 = 16$		merator is the powe	er.	Once again, the radical operations a exponents greatly simplify the multip		rational
	using rational exponent $\sqrt{a^m} = a^{\frac{m}{n}}$				Simplify. Assume all variables have $1.\sqrt{18} \cdot \sqrt[4]{18}$	-	3√900 ⋅√√630
			\sqrt{a}) ^m = $\sqrt[n]{a^m}$.		1. V 18 · V 18	2. $\sqrt{30}$ ·	√900 ·√630
Examples: $\sqrt{5} = 5$	$\frac{1}{2}$ $\sqrt[4]{6^3} = 0$				3\[4]72	30 ³⁰ /3 ¹⁷	$7 \cdot 7^{6} \cdot 10^{11} \approx 30^{30} 1.52 \times 10^{24}$
			ink: The root is $n =$ in power is $m = 3$.	4.	3. $\sqrt{35xy} \cdot \sqrt[4]{35x^2 y^3}$	4. $\sqrt{3xy}$	$\cdot\sqrt[4]{75x^2y^3}\cdot\sqrt[3]{25x^2y}$
			le power is <i>m</i> – 3.		- ,, ,,	v - y	1 -) 1 -)
					4/		$y\sqrt[4^2]{3^9\cdot 5^2 x^8 y^7} = 5xy$
Write each expressio		d simplify.	3		$xy\sqrt[4]{35^3 y} = xy\sqrt[4]{42},$		$\sqrt[4]{492,075x^8y^7}$
7. $27^{\frac{4}{3}} = (\sqrt[3]{27})^4$	8. 49 ²		9. 16 ³		$5.\sqrt{20} \div \sqrt[4]{20}$		$\sqrt[4]{8820}$ ÷ $\sqrt[5]{1296}$
04	((10)3 040	$(\sqrt[4]{16})$	3	4/77		$\frac{\sqrt[2^0]{5^5 \cdot 6^4}}{6} = \frac{\sqrt[2^0]{4,050,000}}{6}$ $\sqrt[3^3]{75x^2 y^2} \div \sqrt[6]{25x^3 y^4}$
81	()	$(\overline{49})^3 = 343$	(\/16)	8 = 8	$7.\sqrt{3xy} \div \sqrt[3]{3x^2y}$		6 6
Write each expressio	n by using rational e	exponents.			$7.\sqrt{3xy} \div \sqrt[3]{3x^2y}$		
10. $\sqrt[5]{4^2}$ Think: $m = 2$			12. $\sqrt[4]{6^5}$		$\frac{\sqrt[6]{3y}}{\sqrt[6]{x}} = \frac{\sqrt[6]{3x^5 y}}{x}$	- /	$\frac{\sqrt[6]{3}}{5\sqrt[6]{x^4} v^5} = \frac{\sqrt[6]{3x^2} y}{5xy}$
				_	$\frac{\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{2}}{x}$		$5\sqrt[6]{x^4y^5}$ 5xy
4 ² / ₅		19 ¹ / ₂	64	<u>5</u> 4	9. \(\frac{175}{\sqrt{3}\tag{175}}\)		$3\sqrt{108})\sqrt[3]{9}$ $9\sqrt[4]{15}$
o					9. $\frac{1}{\sqrt{5}175}$	10.	9 ∜15
Simplify each expres	sion.				10		
13. $\left(\frac{24}{3x^3}\right)^{\frac{1}{3}}$	14. √49 · ∖	$\sqrt[3]{8x^6}$	15. $\sqrt{\frac{117}{13}}$		$175^{\frac{19}{30}} = 5\sqrt[30]{5^8 \cdot 7}$	19 6 ¹²	$5^9 \cdot 3^5 = 6\sqrt[12]{474,609,375}$
			1 10				
$\frac{2}{x}$		14 <i>x</i> ²	3	}			
Copyright © by Holt, Rinehart and Winsto	~	47		Jolt Algobro 2	Copyright @ by Holt, Rinehart and Winston.	40	Ush Alashas 0
All rights reserved.		47	п	Holt Algebra 2	All rights reserved.	48	Holt Algebra 2
Problen	n Solvina				Reading Strate	av	
LESSON Problem 8-6 Radical E Louise is building a g	Expressions an guitar-like instrumen	t. It has small meta	al bars,		Reading Strate 8-6 Use a Concept Maj Vocabulary		Relationship
8-6 Radical E Louise is building a g called frets, positione of a specific scale on	Expressions an guitar-like instrumen ed across its neck so n each string. The dis	t. It has small meta that it can produc stance a fret should	al bars, ce notes d be		8-6 Use a Concept Ma Vocabulary n is called the index of the		•
8-6 Radical E Louise is building a g called frets, positione of a specific scale on placed from the bridg	Expressions an guitar-like instrumen ed across its neck so n each string. The dis ge is related to a stri	t. It has small meta o that it can produc stance a fret should ng's root note leng	al bars, ce notes d be th by the		B-6 Use a Concept Ma Vocabulary n is called the index of the expression		$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
8-6 Radical E Louise is building a g called frets, positione of a specific scale on	Expressions an guitar-like instrumen ed across its neck so n each string. The dis ge is related to a stri $\frac{\pi^2}{2}$, where <i>r</i> is the left	t. It has small meta to that it can product stance a fret should ng's root note leng ength of the root not	al bars, ce notes d be yth by the ote string		8-6 Use a Concept Ma Vocabulary n is called the index of the	p	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example:
8-6 Radical E Louise is building a g called frets, position of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know	Expressions an guitar-like instrumen ed across its neck so n each string. The dis ge is related to a stri $\frac{\pi}{2}$, where <i>r</i> is the le of notes higher than	t. It has small meta o that it can produc stance a fret should ng's root note leng ength of the root no that string's root r	al bars, ce notes d be yth by the ote string note.		8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression	p	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string.	Expressions an guitar-like instrumen ed across its neck so n each string. The dis ge is related to a stri $\frac{7}{12}$, where <i>r</i> is the le of notes higher than w where to place fret	t. It has small meta to that it can produc stance a fret should ng's root note leng ength of the root not that string's root r s to produce differ	al bars, ce notes d be yth by the ote string note. rent notes		8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property		$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example:
8-6 Radical E Louise is building a g called frets, positione of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string.	Expressions an guitar-like instrumen ed across its neck so neach string. The dis ge is related to a stri $\frac{1}{12}$), where <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root r is to produce differ ret that produces a loop of note	al bars, ce notes d be thy by the ote string note. rent notes note exactly	12)	8-6 Use a Concept May Nocabulary n is called the index of the expression The number or expression inside the radical sign a is called the radicand.	p	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property
8-6 Radical E Louise is building a g called frets, positione of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string.	Expressions an guitar-like instrumen ed across its neck so neach string. The dis ge is related to a stri $\frac{1}{12}$), where <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root r is to produce differ ret that produces a loop of note	al bars, ce notes d be thy by the ote string note. rent notes note exactly	- <u>-12</u>)	8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property	p	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$
8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $a(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance to one octave (12 no a. Substitute value	Expressions an guitar-like instrumen ed across its neck so n each string. The dis ge is related to a stri $\frac{d^2}{2}$, where <i>r</i> is the le of notes higher than <i>w</i> where to place fret from the bridge for a f	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root r that string's root r is to produce differ ret that produces a l pot note. ven function.	al bars, ce notes d be thy by the ote string note. rent notes note exactly	- <u>12</u>)	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand . Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example:	$\sqrt[p]{n} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[a]{b}}$
8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-2}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o	Expressions an guitar-like instrumen ed across its neck so neach string. The dis- ge is related to a stri t^2 , where <i>r</i> is the le of notes higher than w where to place fret from the bridge for a f tes) higher than the ro es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is t	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root r that string's root r is to produce differ ret that produces a l bot note. ven function.	al bars, be notes d be the by the bote string note. reent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$	- <u>12</u>)	8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[p]{n} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property
8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-2}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from	Expressions an guitar-like instrumen ed across its neck so each string. The dis ge is related to a stri $\frac{1}{2^2}$, where <i>r</i> is the le of notes higher than w where to place fret from the bridge for a f tes) higher than the ro es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge?	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root n that string's root n to ta produce differ ret that produces a loot note. ven function et be placed? ne distance	al bars, be notes d be the by the bote string note. reent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$	<u>12</u>)	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$	$\sqrt[p]{n} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[a]{b}}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance to one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table	Expressions an guitar-like instrumen ed across its neck so neach string. The dis- ge is related to a stri t^2 , where <i>r</i> is the le of notes higher than w where to place fret from the bridge for a f tes) higher than the ro es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is t	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a not note. ven function. the be placed? irom the bridge, for f	al bars, be notes d be the by the bote string note. reent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$		8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign a is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve.	$\sqrt[p]{n} = a^{\frac{1}{n}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[a]{b}}$
 8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function d(n) = r(2 ⁻ and n is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth 	Expressions an guitar-like instrumen ed across its neck sc e ach string. The dis ge is related to a stri t^2 , where <i>r</i> is the le of notes higher than where to place fref from the bridge for a f tes) higher than the <i>r</i> ces for <i>r</i> and <i>n</i> in the gi he bridge should the fr of the string length is th the bridge? e to find the distance l er note of an entire sc	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root nr that string's root r that string's root r to that produces a l so to note. we function. the be placed? the distance irom the bridge, for f ale on this string.	al bars, ce notes d be the by the ote string note. rent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$ $\frac{1}{2}$ frets that		8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{5}}$.	p $\sqrt[n]{a} = a^{\frac{1}{n}}$ Exa	$\begin{array}{l} \sqrt[n]{a^m} = a^{\frac{m}{n}} \\ \text{Example:} \\ \sqrt[n]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25 \\ \hline \textbf{Quotient Property} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \text{mple:} \sqrt[n]{\frac{a}{9}} = \frac{\sqrt[n]{a}}{\sqrt[n]{9}} = \frac{2}{3} \end{array}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance to one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table	Expressions an guitar-like instrumen ed across its neck so heach string. The dis ge is related to a stri $\frac{\pi}{2}$), where <i>r</i> is the le of notes higher than the from the bridge for a f tes) higher than the or es for <i>r</i> and <i>n</i> in the gi he bridge should the fi of the string length is ti the bridge? e to find the distance l	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root nr that string's root r that string's root r to that produces a l so to note. we function. the be placed? the distance irom the bridge, for f ale on this string.	al bars, be notes d be the by the bote string note. reent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$	12 12	8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{5}}$.	$\sqrt[p]{n} = a^{\frac{1}{n}}$	$\begin{array}{l} \sqrt[n]{a^m} = a^{\frac{m}{n}} \\ \text{Example:} \\ \sqrt[n]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25 \\ \hline \textbf{Quotient Property} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \text{mple:} \sqrt[n]{\frac{a}{9}} = \frac{\sqrt[n]{a}}{\sqrt[n]{9}} = \frac{2}{3} \end{array}$
 8-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function d(n) = r(2 ⁻ and n is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret 	Expressions an guitar-like instrumen ed across its neck sc e ach string. The dis ge is related to a stri t^2 , where <i>r</i> is the le of notes higher than w where to place fref from the bridge for a f tes) higher than the rc es for <i>r</i> and <i>n</i> in the gi he bridge should the fr of the string length is th the bridge? e to find the distance l er note of an entire sc	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a loot note. ven function. ret be placed? ne distance for the bridge, for f ale on this string.	al bars, ce notes d be the by the ote string note. rent notes note exactly $\frac{d(12) = 50(2)}{25 \text{ cm}}$ $\frac{1}{2}$ frets that		8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[6]{ab} = \sqrt[6]{a} \cdot \sqrt[6]{b}$ Example: $\sqrt[3]{216} = \sqrt[6]{27} \cdot \sqrt[6]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{6}{3}}$. Write a	$\sqrt[p]{n} = a^{\frac{1}{n}}$ Exa	$\begin{array}{l} \sqrt[n]{a^m} = a^{\frac{m}{n}} \\ \text{Example:} \\ \sqrt[n]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25 \\ \hline \textbf{Quotient Property} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \text{mple:} \sqrt[n]{\frac{a}{9}} = \frac{\sqrt[n]{a}}{\sqrt[n]{9}} = \frac{2}{3} \end{array}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale or placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note	Expressions an guitar-like instrumen ed across its neck so ge is related to a stri $\frac{1}{12}$), where <i>r</i> is the le of notes higher than <i>w</i> where to place fret from the bridge for a f tes) higher than the ror es for <i>r</i> and <i>n</i> in the gi ne bridge should the fi of the string length is ti the bridge? e to find the distance f er note of an entire so 2 4	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a loot note. ven function. ret be placed? ne distance for the bridge, for f ale on this string.	al bars, be notes d be d be bars, ce notes note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10	12	8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{5}}$.	$\sqrt[p]{n} = a^{\frac{1}{n}}$ Exa	$\begin{array}{l} \sqrt[n]{a^m} = a^{\frac{m}{n}} \\ \text{Example:} \\ \sqrt[n]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25 \\ \hline \textbf{Quotient Property} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \text{mple:} \sqrt[n]{\frac{a}{9}} = \frac{\sqrt[n]{a}}{\sqrt[n]{9}} = \frac{2}{3} \end{array}$
3-6 Radical E Louise is building a g called frets, positione of a specific scale on placed from the bridg function $d(n) = f(2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm)	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, where <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tes) higher than the ro- es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is the the bridge? e to find the distance to er note of an entire so 2 4 444.5 39.7	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a loot note. ven function. ret be placed? ne distance for the bridge, for f ale on this string.	al bars, be notes d be d be bars, ce notes note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10	12	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand sign <i>a</i> is called the radicand . Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write <i>a</i> 2. Identify the radicand in the expression	$\frac{\sqrt{p}}{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = \frac{1}{7x - 4}$ ession $\sqrt[3]{7x - 4}$.	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$
3-6 Radical E Louise is building a g called frets, positione of a specific scale on placed from the bridg function $d(n) = r/2^{-2}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm)	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, where <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tees) higher than the ro- es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is the the bridge? to find the distance le er note of an entire so 2 4 44.5 39.7 the best answer.	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r that string's root r to produce differ ret that produces a t bot note. ven function	al bars, be notes d be the by the obte string note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ rest sthat 8 10 1.5 28.1	12 25	8-6 Use a Concept Ma, Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[6]{ab} = \sqrt[6]{a} \cdot \sqrt[6]{b}$ Example: $\sqrt[3]{216} = \sqrt[6]{27} \cdot \sqrt[6]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{6}{3}}$. Write a	$\frac{\sqrt{p}}{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = \frac{1}{7x - 4}$ ession $\sqrt[3]{7x - 4}$.	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$
 3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function d(n) = f(2 ⁻ and n is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cen The cube has a cor 	Expressions an guitar-like instrumen ed across its neck sc e ach string. The dis- ge is related to a stri $\frac{12}{12}$, where <i>r</i> is the le of notes higher than w where to place fred where to place fred thesh higher than the ro- es for <i>r</i> and <i>n</i> in the gi- ne bridge should the fr of the string length is the the bridge? e to find the distance le er note of an entire sc 2 4 44.5 39.7 the best answer. ramic cube in art class Journe of	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root no that string's root r that string's root r that produces a l so to note. we need that produces a toot note. we need that produces a toot note. et be placed? me distance form the bridge, for f ale on this string.	al bars, be notes d be th by the obte string note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball tr 224 in. ³ . Find the	12 25 I with a e radius of	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand sign <i>a</i> is called the radicand . Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write <i>a</i> 2. Identify the radicand in the expression	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^2}}$. Then s	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[b]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve.
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = f(2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance I one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 336 cm ³ . What is i	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, hence r is the le of notes higher than where to place fred from the bridge for a f tees) higher than the ro es for r and n in the gi e bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so 2 4 44.5 39.7 the best answer. raramic cube in art class oblume of the sidt ength of the	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a to toot note. wen function te be placed? ne distance from the bridge, for f table on this string. 6 35.4 31 35.4 31	al bars, be notes d be d be bars, ce notes note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1	12 25 I with a e radius of	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand sign <i>a</i> is called the radicand . Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write <i>a</i> 2. Identify the radicand in the expression	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = -$ ession $\sqrt[3]{7x - 4}$. 7x - 4	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[b]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve.
 3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function d(n) = f(2 ⁻ and n is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cen The cube has a cor 	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, hence r is the le of notes higher than where to place fred from the bridge for a f tees) higher than the ro es for r and n in the gi e bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so 2 4 44.5 39.7 the best answer. raramic cube in art class oblume of the sidt ength of the	t. It has small meta b that it can produce stance a fret should ng's root note leng ength of the root not that string's root r to the produce differ ret that produces a f bot note. ven function	al bars, be notes d be th by the obte string note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball tr 224 in. ³ . Find the	12 25 I with a e radius of	8-6 Use a Concept Maj Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand sign <i>a</i> is called the radicand . Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write <i>a</i> 2. Identify the radicand in the expression	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^3}}$. Then s Quotient Property;	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[b]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve.
 3-6 Radical E Called frets, positions of a specific scale on placed from the bridg function d(n) = r(2 - and n is the number to Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from the course (12 no a. Substitute value b. How far from the course (12 no a. Complete the table produce every other the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cent The cube has a vor 336 cm³. What is is cube to the nearest (A) 7 B 12 	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, hence r is the le of notes higher than where to place fred from the bridge for a f tees) higher than the ro es for r and n in the gi e bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so 2 4 44.5 39.7 the best answer. raramic cube in art class oblume of the sidt ength of the	t. It has small meta b that it can produc stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a to toot note. wen function te be placed? ne distance from the bridge, for f table on this string. 6 35.4 31 35.4 31	al bars, be notes d be th by the obte string note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball tr 224 in. ³ . Find the	12 25 I with a e radius of	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radication <i>a</i> is called the radication Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{3}{2}}$. Write <i>a</i> 2. Identify the radicand in the expression 3. Identify the property you would the Write each expression as a radication Write each expression as a radication Write each expression as a radication	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^3}}$. Then s Quotient Property;	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[a]{\frac{a}{b}} = \frac{\sqrt[a]{a}}{\sqrt[b]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve.
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = f(2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a ver Choose the letter for 3. Rafael made a cer The cube has a ver Choose the letter for 3. Bafael made a cer The cube has a ver The cube ha	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, hence r is the le of notes higher than where to place fred from the bridge for a f tees) higher than the ro es for r and n in the gi e bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so 2 4 44.5 39.7 the best answer. raramic cube in art class oblume of the sidt ength of the	t. It has small meta behat it can produce stance a fret should ng's root note leng ength of the root not that string's root r is to produce differ ret that produces a bot note. wen function. tet be placed? the distance from the bridge, for f tale on this string. 6 35.4 31 35.4 31 32 4 8 4 4 8 21	al bars, be notes d be th by the obte string note. rent notes note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball tr 224 in. ³ . Find the	12 25 I with a e radius of	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write a 2. Identify the radicand in the expre- 3. Identify the property you would the Write each expression as a radical 4. $9^{\frac{1}{2}}$ 5.	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^3}}$. Then s Quotient Property; -	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve. $\frac{7}{\sqrt{2}}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = f(2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What from th c. What from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vc 336 cm ³ . What is cube to the neares (\mathbf{A}) 7 B 12 C 18 D 56	Expressions an guitar-like instrumen ed across its neck so e ach string. The dis- ge is related to a stri $\frac{1}{12}$, where <i>r</i> is the le of notes higher than <i>w</i> where to place fret from the bridge for a f tees) higher than the roi es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge? e to find the distance I er note of an entire so 2 4 44.5 39.7 the best answer. ramic cube in art class plume of the side length of the st centimeter?	t. It has small meta b that it can produce stance a fret should ng's root note leng ength of the root not that string's root r s to produce differ ret that produces a to bot note. wen function	Al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball f 7234 in. ³ . Find the ise ball to the neared ent in the shape of a	12 25 I with a e radius of est inch.	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radication <i>a</i> is called the radication Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{3}{2}}$. Write <i>a</i> 2. Identify the radicand in the expression 3. Identify the property you would the Write each expression as a radication Write each expression as a radication Write each expression as a radication	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^3}}$. Then s Quotient Property; -	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve. $\frac{7}{\sqrt{2}}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-2}$ and <i>n</i> is the number - Louise wants to know on a 50-cm string. 1. Find the distance is one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 336 cm ³ . What is cube to the neares (A) 7 B 12 C 18 D 56 5. Which formula cou	Expressions an guitar-like instrumen ed across its neck so each string. The dis- ge is related to a stri $\frac{1}{12}$, hence r is the le of notes higher than where to place fred from the bridge for a f tees) higher than the ro es for r and n in the gi e bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so 2 4 44.5 39.7 the best answer. raramic cube in art class oblume of the sidt ength of the	t. It has small mean behavious to that it can produce stance a fret should ong's root note leng ength of the root not that string's root r is to produce differ ret that produces a l sot note. wen function. the distance from the bridge, for f ale on this string.	al bars, se notes d be thin by the ote string note. note exactly $d(12) = 50(2)$ 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball to the neared ent in the shape of a are has a volume of a set has a volum	12 25 I with a e radius of est inch.	B-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[3]{ab} = \sqrt[3]{a} \cdot \sqrt[3]{b}$ Example: $\sqrt[3]{216} = \sqrt[3]{27} \cdot \sqrt[3]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. <u>Write a</u> 2. Identify the radicand in the expression 3. Identify the property you would a Write each expression as a radical 4. $9^{\frac{1}{2}}$ 5. <u>3</u>	$\frac{\sqrt{2}}{8} = \frac{1}{n}$ Exa as a radical, $\sqrt[3]{8^2} = \frac{1}{n}$ ession $\sqrt[3]{7x - 4}$. $7x - 4$ use to solve $\sqrt{\frac{49}{x^4}}$. Then s Quotient Property; $\frac{1}{2}$ and simplify. $8^{\frac{1}{3}}$ 2	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt[4]{4}}{\sqrt[9]{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve. $\frac{7}{4^2}$ 6. $(x^8)^{\frac{1}{4}}$ x^2
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number <i>r</i> Louise wants to know on a 50-cm string. 1. Find the distance <i>t</i> one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 38 cm ³ . What is to cube to the nearest (A) 7 B 12 C 18 D 56 5. Which formula cool area of one side o were given?	Expressions an guitar-like instrumen ed across its neck so e ach string. The dis- ge is related to a stri $\frac{1}{12}$, hence <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tees) higher than the roi es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so $\frac{2}{444.5}$ 39.7 the best answer. ramic cube in art class oblume of the side length of the st centimeter?	t. It has small meta b that it can produce stance a fret should ng's root note leng ength of the root not that string's root r that string's root r et that produces a t boot note. wen function	al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball f 7234 in. ⁹ . Find the ise ball to the nearer ent in the shape of a be area of the grour rs in square meters'	12 25 I with a e radius of ast inch. a 14,130 m ³ . nd that the ?	B-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[3]{ab} = \sqrt[3]{a} \cdot \sqrt[3]{b}$ Example: $\sqrt[3]{216} = \sqrt[3]{27} \cdot \sqrt[3]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. <u>Write a</u> 2. Identify the radicand in the expression 3. Identify the property you would a Write each expression as a radical 4. $9^{\frac{1}{2}}$ 5. <u>3</u>	$\sqrt[p]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[3]{8^2} = 1$ ession $\sqrt[3]{7x - 4}$. 7x - 4 use to solve $\sqrt{\frac{49}{x^3}}$. Then s Quotient Property; -	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$ Example: $\sqrt[3]{5^6} = 5^{\frac{6}{3}} = 5^2 = 25$ Quotient Property $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ mple: $\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$ $\sqrt[3]{64} = 4$ solve. $\frac{7}{\sqrt{2}}$
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number <i>r</i> Louise wants to know on a 50-cm string. 1. Find the distance <i>t</i> one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 38 cm ³ . What is to cube to the nearest (A) 7 B 12 C 18 D 56 5. Which formula cool area of one side o were given?	Expressions an guitar-like instrumen ed across its neck so e ach string. The dis- ge is related to a stri $\frac{1}{12}$, hence <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tees) higher than the roi es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so $\frac{2}{444.5}$ 39.7 the best answer. ramic cube in art class oblume of the side length of the st centimeter?	t. It has small meta behat it can produce stance a fret should ing's root note leng ength of the root not that string's root r that string's root r et be placed?	al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball 1.7234 in. ³ . Find the ise ball to the neared even has a volume of he area of the group rs in square meters' $(C) 112^{2}$	12 25 with a e radius of est inch. a i 14,130 m ³ . nd that the ?	B-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radical sign <i>a</i> is called the radicand. Product Property $\sqrt[3]{ab} = \sqrt[3]{a} \cdot \sqrt[3]{b}$ Example: $\sqrt[3]{216} = \sqrt[3]{27} \cdot \sqrt[3]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. <u>Write a</u> 2. Identify the radicand in the expression 3. Identify the property you would a Write each expression as a radical 4. $9^{\frac{1}{2}}$ 5. <u>3</u>	$\frac{\sqrt{2}}{8} = \frac{1}{n}$ Exa as a radical, $\sqrt[3]{8^2} = \frac{1}{n}$ ession $\sqrt[3]{7x - 4}$. $7x - 4$ use to solve $\sqrt{\frac{49}{x^4}}$. Then s Quotient Property; $\frac{1}{2}$ and simplify. $8^{\frac{1}{3}}$ 2	
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = f(2^{-1}$ and <i>n</i> is the number Louise wants to know on a 50-cm string. 1. Find the distance i one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 336 cm ⁹ . What is i cube to the neares (A) 7 B 12 C 18 D 56 5. Which formula co area of one side o were given?	Expressions an guitar-like instrumen ed across its neck sc e each string. The dis- ge is related to a stri f^{\pm} , where <i>r</i> is the le of notes higher than w where to place fred from the bridge for a f tes) higher than the ro- es for <i>r</i> and <i>n</i> in the gi- ne bridge should the fr of the string length is th the bridge? e to find the distance 1 er note of an entire sc 2 4 44.5 39.7 the best answer. ramic cube in art class plume of the side length of the st centimeter?	t. It has small meta b that it can produce stance a fret should ng's root note leng ength of the root not that string's root r that string's root r et that produces a t boot note. wen function	al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball f 7234 in. ⁹ . Find the ise ball to the nearer ent in the shape of a be area of the grour rs in square meters'	12 25 with a e radius of est inch. a i 14,130 m ³ . nd that the ?	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write a 2. Identify the radicand in the expre- 3. Identify the property you would the Write each expression as a radica 4. $9^{\frac{1}{2}}$ 5. 3. 7. $25^{\frac{3}{2}}$ 8.	p $\sqrt[n]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[n]{8^2} = a^{1$	
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number <i>r</i> Louise wants to know on a 50-cm string. 1. Find the distance <i>t</i> one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 38 cm ³ . What is to cube to the nearest (A) 7 B 12 C 18 D 56 5. Which formula cool area of one side o were given?	Expressions an guitar-like instrumen ed across its neck so e ach string. The dis- ge is related to a stri $\frac{1}{12}$, hence <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tees) higher than the roi es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so $\frac{2}{444.5}$ 39.7 the best answer. ramic cube in art class oblume of the side length of the st centimeter?	t. It has small meta behat it can produce stance a fret should ing's root note leng ength of the root not that string's root r that string's root r et be placed?	al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball 1.7234 in. ³ . Find the ise ball to the neared even has a volume of he area of the group rs in square meters' $(C) 112^{2}$	12 25 with a e radius of est inch. a i 14,130 m ³ . nd that the ?	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write a 2. Identify the radicand in the expre- 3. Identify the property you would the Write each expression as a radica 4. $9^{\frac{1}{2}}$ 5. 3. 7. $25^{\frac{3}{2}}$ 8.	p $\sqrt[n]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[n]{8^2} = a^{1$	
3-6 Radical E Louise is building a g called frets, positions of a specific scale on placed from the bridg function $d(n) = r/2^{-1}$ and <i>n</i> is the number <i>r</i> Louise wants to know on a 50-cm string. 1. Find the distance <i>t</i> one octave (12 no a. Substitute value b. How far from th c. What fraction o of this fret from 2. Complete the table produce every oth Notes Higher than the Root Note Distance of Fret from Bridge (cm) Choose the letter for 3. Rafael made a cer The cube has a vo 38 cm ³ . What is to cube to the nearest (A) 7 B 12 C 18 D 56 5. Which formula cool area of one side o were given?	Expressions an guitar-like instrumen ed across its neck so e ach string. The dis- ge is related to a stri $\frac{1}{12}$, hence <i>r</i> is the le of notes higher than <i>w</i> where to place fred from the bridge for a f tees) higher than the roi es for <i>r</i> and <i>n</i> in the gi le bridge should the fr of the string length is th the bridge? e to find the distance is er note of an entire so $\frac{2}{444.5}$ 39.7 the best answer. ramic cube in art class oblume of the side length of the st centimeter?	t. It has small meta behat it can produce stance a fret should ing's root note leng ength of the root not that string's root r that string's root r et be placed?	al bars, be notes d be the by the bote string note. rent notes note exactly d(12) = 50(2) 25 cm $\frac{1}{2}$ frets that 8 10 1.5 28.1 has an exercise ball 1.7234 in. ³ . Find the ise ball to the neared even has a volume of he area of the group rs in square meters' $(C) 112^{2}$	12 25 with a e radius of est inch. a i 14,130 m ³ . nd that the ?	3-6 Use a Concept May Vocabulary <i>n</i> is called the index of the expression The number or expression inside the radicand. Product Property $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Example: $\sqrt[n]{216} = \sqrt[n]{27} \cdot \sqrt[n]{8} = 3 \cdot 2 = 6$ Solve. 1. Explain how to simplify $8^{\frac{2}{3}}$. Write a 2. Identify the radicand in the expre- 3. Identify the property you would the Write each expression as a radica 4. $9^{\frac{1}{2}}$ 5. 3. 7. $25^{\frac{3}{2}}$ 8.	p $\sqrt[n]{a} = a^{\frac{1}{n}}$ Exa as a radical, $\sqrt[n]{8^2} = a^{1$	