Date	Class
_	

LESSONPractice A8-6Radical Expressions and Rational Exponents			
Answer each question.	The first one is done for you.		
1. List all of the square	6 and -6		
2. What is the inverse of			
3. Express $n^{\frac{1}{2}}$ without a			
4. Express $n^{\frac{7}{4}}$ without a			
5. Write the following road the index is 12.	pot: the radicand is 10		
Find all real roots. The	first one is done for you.		
6. 4th roots of 1	7. cube roots of 27	8. square roots of 81	
$\sqrt[4]{1} = \sqrt[2]{\sqrt[2]{1}} = \sqrt[2]{1} =$	<u>= ±1</u>		
Write each expression The first one is done fo	in radical form, and simplify. or you.		
9. $6^{\frac{1}{2}}$	10. $8^{\frac{2}{3}}$	11. $5^{\frac{4}{3}}$	
$6^{\frac{1}{2}} = \sqrt[2]{6^1} = \sqrt{6}$	<u>.</u>		
Write each expression The first one is done fo	by using rational exponents. r you.		
12. $\sqrt{7^2}$	13. $\sqrt[4]{5^3}$	14. $\sqrt[3]{10^5}$	
$\sqrt[7]{7^2} = 7^{\frac{2}{2}} = 7^1 =$	= 7		
Simplify each expression. Assume all variables are positive.			
15. $\sqrt[3]{8x^3}$	16. √ $\frac{36}{16}$	17. $2^2 \cdot 2^3$	
18. $\frac{(3x)^4}{(3x)^2}$	19. $(5^2)^2$	20. $\left(\frac{8x^3}{27}\right)^{\frac{1}{3}}$	

Class

Practice A LESSON 8-6 Radical Expressions and Rational Exponents Answer each question. The first one is done for you. 6 and -6 1. List all of the square roots of 36. The square root 2. What is the inverse of the square of a number? **3.** Express $n^{\frac{1}{2}}$ without a fractional exponent. ∨*n* **4.** Express $n^{\frac{7}{4}}$ without a fractional exponent. 5. Write the following root: the radicand is 10 **∛∕10** and the index is 12. Find all real roots. The first one is done for you. 6. 4th roots of 1 7. cube roots of 27 8. square roots of 81 $\sqrt[4]{1} = \sqrt[2]{\sqrt[2]{1}} = \sqrt[2]{1} = \pm 1$ 3 ± 9 Write each expression in radical form, and simplify. The first one is done for you. **10.** $8^{\frac{2}{3}}$ **11.** $5^{\frac{4}{3}}$ 9. $6^{\frac{1}{2}}$ $\sqrt[3]{8^2} = 4$ **∛**5⁴ $6^{\frac{1}{2}} = \sqrt[2]{6^1} = \sqrt{6}$ Write each expression by using rational exponents. The first one is done for you. **12.** $\sqrt{7^2}$ 14. $\sqrt[3]{10^5}$ **13**. $\sqrt[4]{5^3}$ $10^{\frac{5}{3}}$ $5^{\frac{3}{4}}$ $\sqrt[2]{7^2} = 7^{\frac{2}{2}} = 7^1 = 7$ Simplify each expression. Assume all variables are positive. **16.** $\sqrt{\frac{36}{16}}$ $15.\sqrt[3]{8x^3}$ **17.** $2^2 \cdot 2^3$ 3 2^{5} or 322 2x**20.** $\left(\frac{8x^3}{27}\right)^{\frac{1}{3}}$ 18. $\frac{(3x)^4}{(3x)^2}$ **19.** $(5^2)^2$ 2*x* **9**x² 5⁴ or 625