8-6 Radical Expressions and Rational Exponents

Example 1 Finding Real Roots

Find all real roots.

A. sixth roots of 64

A positive number has two real sixth roots. Because $2^6 = 64$ and $(-2)^6 = 64$, the roots are 2 and -2.

B. cube roots of -216

A negative number has one real cube root. Because $(-6)^3 = -216$, the root is -6.

C. fourth roots of -1024

A negative number has no real fourth roots.

8-6 Radical Expressions and Rational Exponents

Example 2 Simplifying Radical Expressions

Simplify each expression. Assume that all variables are positive.

A.
$$\sqrt[4]{81x^{12}}$$

 $\sqrt[4]{3^4 \cdot x^4 \cdot x^4 \cdot x^4}$
 $\sqrt[4]{3^4} \cdot \sqrt[4]{x^4} \cdot \sqrt[4]{x^4} \cdot \sqrt[4]{x^4}$
 $3 \cdot x \cdot x \cdot x$
 $3x^3$

Factor into perfect fourths. Product Property Simplify.

B.
$$\sqrt[4]{\frac{16x^8}{5}}$$

 $\sqrt[4]{\frac{16x^8}{5}}$
 $\frac{\sqrt[4]{5}}{\sqrt[4]{5}}$
 $\frac{2x^2}{\sqrt[4]{5}}$
 $\frac{2x^2}{\sqrt[4]{5}} \cdot \frac{\sqrt[4]{5}}{\sqrt[4]{5}} \cdot \frac{\sqrt[4]{5}}{\sqrt[4]{5}}$
 $\frac{2x^2\sqrt[4]{5^3}}{\sqrt[4]{5^4}}$
 $\frac{2x^2\sqrt[4]{5^3}}{\sqrt[4]{5^4}}$
 $\frac{2x^2\sqrt[4]{125}}{5}$

Quotient Property

Simplify the numerator.

Rationalize the denominator.

Product Property

Simplify.

8-6 Radical Expressions and Rational Exponents

Example 3 Writing Expressions in Radical Form

Write the expression $(-32)^{\frac{3}{5}}$ in radical form and simplify.

Method 1	Evaluate the root first.	Method 2	Evaluate the power first.
(√ <u>-32</u>) ³	Write with a radical.	$\sqrt[5]{(-32)^3}$	Write with a radical.
$(-2)^{3}$	Evaluate the root.	√√-32,768	Evaluate the power.
-8	Evaluate the power.	-8	Evaluate the root.

8-6 Radical Expressions and Rational Exponents

Example 4 Writing Expressions by Using Rational Exponents

Write each expression by using rational exponents.

A . ∜13 ⁴		B . ⁵ √3 ¹⁵	
$13^{\frac{4}{8}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$	$3^{\frac{15}{5}}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
$13^{\frac{1}{2}}$	Simplify.	$3^3 = 27$	Simplify.

8-6 Radical Expressions and Rational Exponents

Example 5 Simplifying Expressions with Rational Exponents

Simplify each expression.

Α.	$7^{\frac{7}{9}} \cdot 7^{\frac{11}{9}}$ $7^{\frac{7}{9} + \frac{11}{9}}$ 7^{2} 49	Product of Powers Simplify. Evaluate the power.	B. $\frac{16^{\frac{3}{4}}}{16^{\frac{5}{4}}}$ $16^{\frac{3}{4} - \frac{5}{4}}$ $16^{-\frac{1}{2}}$ $\frac{1}{16^{\frac{1}{2}}}$ $\frac{1}{4}$	Quotient of Powers Simplify. Negative Exponent Property Evaluate the
Check Enter the expression in a graphing calculator. 7^(7/9)*7^(11/9) 49		Check Enter the expression in a graphing calculator. 16^(3/4)/16^(5/4) .25		

8-6 Radical Expressions and Rational Exponents

Example 6 Chemistry Application

Radium-226 is a form of radioactive element that decays over time. An initial sample of radium-226 has a mass of 500 mg. The mass of radium-226 remaining from the initial sample after *t* years is given by $500(2^{-\frac{t}{1600}})$. To the nearest milligram, how much radium-226 would be left after 800 years?

$$500(2^{-\frac{t}{1600}}) = 500(2^{-\frac{800}{1600}})$$

= $500(2^{-\frac{1}{2}})$
= $500(\frac{1}{2^{\frac{1}{2}}})$
= $\frac{500}{2^{\frac{1}{2}}}$
 ≈ 354

The amount of radium-226 left after 800 years would be about 354 mg. Substitute 800 for t.

Simplify.

Negative Exponent Property

Simplify.

Use a calculator.