LESSON Practice A 8-5 Solving Rational Equations and Inequalities

Find the least common denominator (LCD) for each pair.

1.
$$\frac{x}{1}$$
 and $\frac{3}{x}$ **2.** $\frac{3}{x-6}$ and $\frac{x}{4}$ **3.** $\frac{1}{x^2}$ and $\frac{1}{x^3}$

Solve each equation. The first one is done for you.

4.
$$\frac{2}{1} + \frac{1}{x} = \frac{4}{1}$$
 LCD = x
 $\frac{2x}{x} + \frac{1}{x} = \frac{4x}{x}$
 $2x + 1 = 4x$ Multiply by x.
 $1 = 2x$
 $\frac{1}{2} = x$
5. $\frac{12}{x} + 4 = 3$

6.
$$x + 2 = \frac{3}{x}$$

Solve each inequality. The first one is done for you.

7.
$$\frac{8}{x+2} < 2$$

8. $\frac{10}{x-5} \ge 2$
9. $\frac{3}{x-1} < 3$

Solve.

10. List all of the extraneous solutions for the equation $\frac{2x}{x+4} = \frac{x}{x-1}$.

LESSON Practice A 8-5 Solving Rational Equations and Inequalities

Find the least common denominator (LCD) for each pair.

1. $\frac{x}{1}$ and $\frac{3}{x}$	2. $\frac{3}{x-6}$ and $\frac{x}{4}$	3. $\frac{1}{x^2}$ and $\frac{1}{x^3}$
X	4 (x - 6)	X ³

Solve each equation. The first one is done for you.

4.
$$\frac{2}{1} + \frac{1}{x} = \frac{4}{1}$$
 LCD = x
 $\frac{2x}{x} + \frac{1}{x} = \frac{4x}{x}$
 $2x + 1 = 4x$ Multiply by x.
 $1 = 2x$
 $\frac{1}{2} = x$
5. $\frac{12}{x} + 4 = 3$

x = -12

6.
$$x + 2 = \frac{3}{x}$$

 $x = -3, x = 1$

Solve each inequality. The first one is done for you.

7.
$$\frac{8}{x+2} < 2$$

8. $\frac{10}{x-5} \ge 2$
9. $\frac{3}{x-1} < 3$
 $x < 1 \text{ or } x > 2$
8. $\frac{10}{x-5} \ge 2$
 $5 < x \le 10$

Solve.

10. List all of the extraneous solutions for the equation $\frac{2x}{x+4} = \frac{x}{x-1}$. x = -4 and 1 because they make the denominators of the original equation equal to 0