	ative Test
8	
Select the best ans	wer.
1. Simplify $\frac{3\sqrt{56}}{\sqrt{21}}$.	
A 2\(\sqrt{6}\)	C 9\(\)2
B 6\(\sqrt{2}\)	$D \ \frac{3\sqrt{8}}{\sqrt{3}}$
2. Evaluate $\left(\frac{1}{2}\right)^{-3}$	\times (3 ⁻²).
F $\frac{1}{72}$	H <u>9</u>
G ⁸ / ₉	J 72
3. Simplify $\left(\frac{2x^3y}{x^2(y^2z)}\right)$	$\left(\frac{1}{2}\right)^{4}$ Assume all
variables are no	nzero.
$\mathbf{A} \; \frac{y^3 z^4}{2x}$	$c \frac{y^7 z^4}{2x}$
B $\frac{2x}{y^{3}z^{4}}$	$D \frac{2x}{y^7 z^4}$
4. Evaluate $f(-3)$	if $f(x) = \frac{1-2x}{2+x}$.
F −7	H 1
G -1	J 5
finish line, in me he starts 10 kilo	H(t) represents the n a runner and the ters, after t seconds if meters from the finish a rate of 5 meters per

line and runs at a rate of 5 meters per second?

A
$$H(t) = 10 - 5t$$

B
$$H(t) = 5t - 10$$

C
$$H(t) = 10,000 - 5t$$

D
$$H(t) = 5t - 10,000$$

6. Solve
$$\frac{20}{x+1} = \frac{28}{x}$$
.
F $x = -4.5$ H $x = -3$
G $x = -3.5$ J $x = -2.5$

7. Which set of points could represent a linear function? **A** {(1, 10), (3, 6), (5, 2), (7, -4)} **B** {(-1, 1), (-2, 4), (-3, 9), (-4, 16)} **C** {(1, 2), (2, 5), (4, 8), (8, 11)} **D** {(1, -3), (3, 1), (5, 5), (8, 11)} 8. A line has slope $-\frac{3}{4}$ and passes through (1, 3). Which of these points is also on the line? **F** (−2, 7) **H** (4, 7) **G** (-7, -3) **J** (13, -6)

9. Which is the equation of the line perpendicular to 2x + 3y = 10 and passing through (2, -3)?

A
$$3x - 2y = 12$$

B $y = -\frac{3}{2}x - 6$
C $y = \frac{3}{2}x + 10$
D $y = -\frac{2}{3}(x - 2) - 3$
10. Solve $\frac{1}{2}|10 - 2x| \le 1$.
F $\left\{x \mid -\frac{11}{2} \le x \le -\frac{9}{2}\right\}$
G $\left\{x \mid x \le -\frac{11}{2} \text{ or } x \ge -\frac{9}{2}\right\}$
H $\left\{x \mid \frac{9}{2} \le x \le \frac{11}{2}\right\}$
J $\left\{x \mid x \le \frac{9}{2} \text{ or } x \ge \frac{11}{2}\right\}$

11. Bert's Rent-a-Car will rent you a car for \$55 per day with no mileage charge. Mavis Rent-a-Car will rent you a car for \$34 per day plus 15 cents per mile beyond the first 100 miles. For what number of miles is the total cost of a one-day rental the same for both rent-a-car companies?

A	140	С	240
В	210	D	310

8

CHAPTER Cumulative Test

continued

- **12.** Solve $\begin{cases} 2x + 5y = 19 \\ 7x 3y = 46 \end{cases}$. **F** (-3, 6) **H** (7, 1) **G** (4.5, 2) **J** (12, -1)
- **13.** The Drama Club is selling pizza for a fund-raiser. They sell slices of cheese pizza for \$1.25 and slices of pepperoni pizza for \$1.50. Altogether they sell 150 slices for \$208.50. How many slices of pepperoni pizza did they sell?

A	66	С	78
В	72	D	84

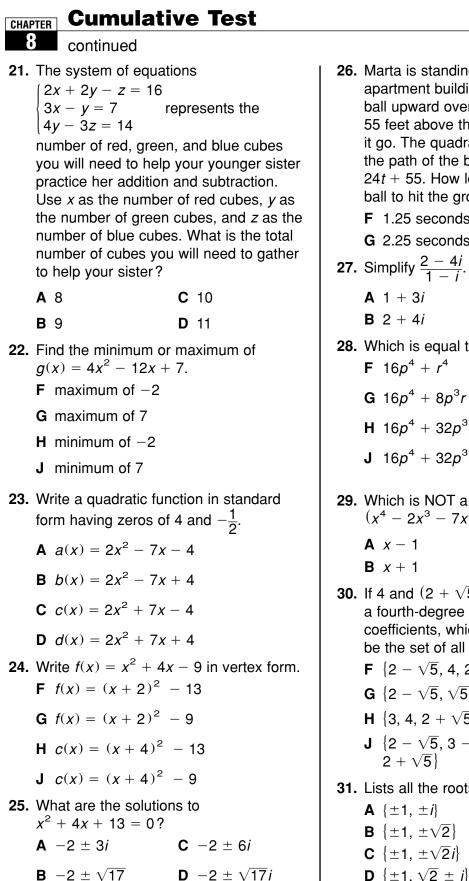
14. On a feasible region whose vertices are $\{(0, 0), (0, 10), (3, 8), (6, 5), (13, 0)\}$, what is the maximum of the objective function R = 3x + 4y, and where does it occur?

F 39 at (13, 0) **H** 41 at (3, 8) **G** 40 at (0, 10) **J** 44 at (6, 5)

15. The system
$$\begin{cases} x + 2y + 4z = 13\\ 2x + 3y - z = 7\\ 3x + y + 2z = 14 \end{cases}$$
 is

- A inconsistent, with no solutions.
- **B** dependent, with infinitely many solutions.
- C independent, with one solution.
- D dependent, with one solution.

16. If
$$C = \begin{bmatrix} 4 & -1 \\ -1 & 2 \\ -3 & 3 \end{bmatrix}$$
 and $D = \begin{bmatrix} -2 & 2 \\ 3 & -3 \\ 1 & -1 \end{bmatrix}$,
evaluate $C - 2D$.
F $\begin{bmatrix} 0 & 3 \\ 5 & -4 \\ -1 & 1 \end{bmatrix}$ **H** $\begin{bmatrix} 8 & -5 \\ -7 & 8 \\ -5 & 5 \end{bmatrix}$
G $\begin{bmatrix} 6 & -3 \\ -4 & 5 \\ -4 & 4 \end{bmatrix}$ **J** $\begin{bmatrix} 10 & -4 \\ -5 & 7 \\ -7 & 7 \end{bmatrix}$


17. If
$$A = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}$$
, evaluate A^3 .
A $\begin{bmatrix} 6 & -1 \\ 1 & -6 \end{bmatrix}$
C $\begin{bmatrix} 8 & -1 \\ 1 & -8 \end{bmatrix}$
B $\begin{bmatrix} 6 & -3 \\ 3 & -6 \end{bmatrix}$
D $\begin{bmatrix} 8 & -3 \\ 3 & -8 \end{bmatrix}$

Date Class

18. The triangle $\triangle ABC$ has vertices A(3, -1), B(5, 4), and C(-2, 3). What are the coordinates of the image of $\triangle ABC$ after it has been rotated using the rotation matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$? **F** A'(-3, 1), B'(-5, -4), C'(2, -3)**G** A'(-1, -3), B'(4, -5), C'(3, 2)**H** A'(1, -3), B'(-4, -5), C'(-3, 2)**J** A'(1,3), B'(-4,5), C'(-3,-2)**19.** Which matrix is the inverse of $\begin{vmatrix} 2 & 1 \\ -3 & 3 \end{vmatrix}$? $\mathbf{A} \begin{bmatrix} -\frac{2}{3} & -1 \\ \frac{1}{3} & -1 \end{bmatrix} \qquad \mathbf{C} \begin{bmatrix} \frac{1}{3} & -\frac{1}{9} \\ \frac{1}{3} & \frac{2}{9} \end{bmatrix}$ $\mathbf{B}\begin{bmatrix} -\frac{2}{9} & -\frac{1}{3} \\ \frac{1}{\alpha} & -\frac{1}{3} \end{bmatrix} \qquad \mathbf{D}\begin{bmatrix} 1 & -\frac{1}{3} \\ 1 & \frac{2}{3} \end{bmatrix}$ **20.** What is $\begin{bmatrix} 5 & 2 & | & 46 \\ 7 & -3 & | & 47 \end{bmatrix}$ in reduced rowechelon form? **F** $\begin{bmatrix} 1 & 0 & 8 \\ 0 & 1 & 2 \end{bmatrix}$ **H** $\begin{bmatrix} 1 & 0 & 93 \\ 0 & 1 & 1 \end{bmatrix}$

$$\mathbf{G} \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & 5 \end{bmatrix} \qquad \mathbf{J} \begin{bmatrix} 12 & -1 & 93 \\ 2 & -5 & 1 \end{bmatrix}$$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

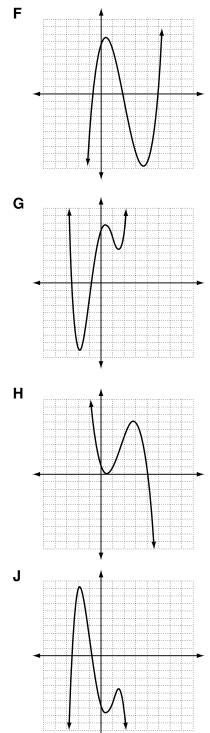
26. Marta is standing on the roof of her apartment building when she throws a ball upward over the edge. The ball is 55 feet above the ground when she lets it go. The guadratic equation that models the path of the ball is $p(t) = -16t^2 +$ 24t + 55. How long does it take for the ball to hit the ground?

F 1.25 seconds H 2.75 seconds G 2.25 seconds J 3.25 seconds **27.** Simplify $\frac{2-4i}{1-i}$. **C** 3 - *i* **A** 1 + 3*i* **B** 2 + 4*i* **D** 4 - 2i**28.** Which is equal to $(2p + r)^4$? **F** $16p^4 + r^4$ **G** $16p^4 + 8p^3r + 4p^2r^2 + 2pr^3 + r^4$ **H** $16p^4 + 32p^3r + 16p^2r^2 + 4pr^3 + r^4$

J $16p^4 + 32p^3r + 24p^2r^2 + 8pr^3 + r^4$

29. Which is NOT a factor of $(x^4 - 2x^3 - 7x^2 + 8x + 12)?$ **C** x - 2**A** x - 1**B** *x* + 1 **D** x + 2

30. If 4 and $(2 + \sqrt{5})$ are two of the roots of a fourth-degree polynomial with integer coefficients, which of the following could be the set of all of the roots?


F $\{2 - \sqrt{5}, 4, 2 + \sqrt{5}\}$ **G** {2 - $\sqrt{5}$, $\sqrt{5}$, 4, 2 + $\sqrt{5}$ } **H** {3, 4, 2 + $\sqrt{5}$, 7} **J** $\{2 - \sqrt{5}, 3 - \sqrt{2}, \sqrt{5}, 4, 3 + \sqrt{2}, \sqrt{5}, 4, 3 + \sqrt{2}, 3$ $2 + \sqrt{5}$ **31.** Lists all the roots of $x^4 + x^2 = 2$. **A** { $\pm 1, \pm i$ } **B** $\{\pm 1, \pm \sqrt{2}\}$ **C** $\{\pm 1, \pm \sqrt{2}i\}$

8

CHAPTER Cumulative Test

continued

32. If A(x) and B(x) are both quadratic functions with negative leading coefficients, and C(x) is the product of A(x) and B(x), which of the following could be the graph of C(x)?

33. If $f(x) = -x^3 + 2x^2 - 3x + 4$, and g(x)is a translation of f(x) two units to the right, which of the following is equal to g(x)?

A
$$-x^3 - 4x^2 - 23x + 26$$

B
$$-x^3 - 4x^2 - 7x - 2$$

C
$$-x^3 + 8x^2 - 23x + 26$$

D
$$-x^3 + 8x^2 - 7x - 2$$

34. The city of Easton had a population of 45,000 in 1997 and then began to decrease in population at a rate of 1.5% per year. Which function expresses the population of Easton in the year t?

F
$$P(t) = 45,000(.015)^{t}$$

G
$$P(t) = 45,000(.015)^{t-1997}$$

- **H** $P(t) = 45,000(.985)^{t}$
- **J** $P(t) = 45,000(.985)^{t-1997}$
- 35. Which of the following is the inverse of $f(x) = 3(5^{x})?$

A
$$f^{-1}(x) = \log_5 \frac{x}{3}$$

B $f^{-1}(x) = \frac{\log_5 x}{3}$
C $f^{-1}(x) = 3\log_5 x$

D
$$f^{-1}(x) = \log_{15} x$$

36. Evaluate log₈ 0.25.

F $-\frac{2}{3}$	H <u>1</u> 32
G $-\frac{1}{32}$	J $\frac{2}{3}$

37. Simplify $\log_4 3 + \log_4 12$.

A	<u>2ln 6</u> In 4	С	log 36
В	log₄ 15	D	log₃ 12

Chapter Test Form C 1. $Q = \frac{kPT}{R}$; Q varies jointly with P and T and inversely with R. **2.** $\frac{9}{20}$ or 0.45 **3.** $A = \frac{k}{BC}$; A varies inversely with the product of B and C. 4. $2x^2 - 4x - 30$ **5.** {-4} 6. $\frac{2x}{1-x^2}$ 7. $\frac{x-1}{x+1}$ 8. 7.5 mph **9.** *a* < −5 **10.** HA at $y = \frac{9}{4}$; VA at $x = \pm \frac{3}{2}$ **11.** (2, -6) **12.** $f(x) = \frac{2x^2 - 4x - 48}{x^2 - 7x + 6}$ **13.** $\left\{\frac{24}{23}, 4\right\}$ 14. 6 hours **15.** $x^{-\frac{1}{6}}v^{\frac{7}{6}}$ **16**. 4 **17.** $g(x) = \sqrt{-\frac{1}{2}x - 2} - 1$ **18.** $a = 2, b = -\frac{3}{4}$ **19.** $\left\{-\frac{4}{3}\right\}$ **20.** {-1, 4} Performance Assessment **1.** $R(x) = \frac{1}{(x-3)}$ **2.** $R(x) = \frac{(x-2)}{(x-3)(x-2)}$

3. The numerator and denominator must have the same degree, and the leading coefficient of the numerator must be two times the leading coefficient of the denominator.

4.
$$R(x) = \frac{2(x-a)(x-2)}{(x-3)(x-2)}$$

5. For the function $R'(x) = \frac{2(x-a)}{(x-3)}$, R'(2) = -2.

6.
$$\frac{2(2-a)}{(2-3)} = -2; \frac{4-2a}{-1} = -2;$$

 $4-2a = 2; a = 1.$

7.
$$R(x) = \frac{2(x-1)(x-2)}{(x-3)(x-2)} = \frac{2x^2-6x+4}{x^2-5x+6}$$

Cumulative Test

1. A 2. G 3. C 4. F 5. C 6. G 7. D 8. J 9. A 10. H 11. C 12. H 13. D 14. H 15. C 16. H 17. B 18. G 19. C 20. F

21. D	7. A
22. H	8. H
23. A	9. B
24. F	10. J
25. A	Chapter Test Form A
26. H	1. A
27. C	2. B
28. J	3. C
29. A	4. B
30. F	5. D
31. C	6. C
32. G	7. A
33. C	8. C
34. J	9. A
35. A	10. C
36. F	11. B
37. A	12. B
CHAPTER 9	13. D
Section Quiz: Section A	14. A
1. C	15. B
2. H	16. C
3. B	Chapter Test Form B
4. H	1. D
5. B	2. H
6. J	3. C
Section Quiz: Section B	4. J
1. D	5. D
2. J	6. H
3. D	7. A
4. F	8. G
5. D	9. B
6. F	10. H