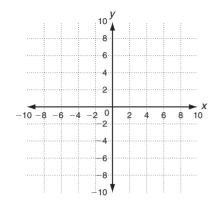
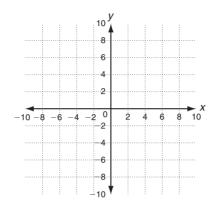
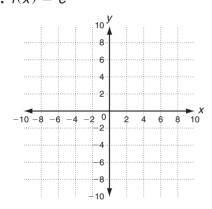
TEKS 2A.4.A

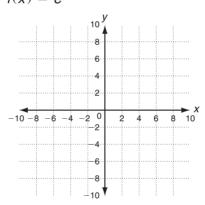


Practice B


7-6 The Natural Base, e

Graph.


1.
$$f(x) = e^{2x}$$


2.
$$f(x) = e^{0.5x}$$

3.
$$f(x) = e^{1+x}$$

4.
$$f(x) = e^{2-x}$$

Simplify.

5. In
$$e^{x+2}$$

6.
$$e^{\ln 2x}$$

7.
$$e^{7 \ln x}$$

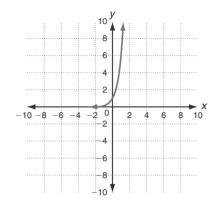
8. In
$$e^{3x+1}$$

10. In
$$e^{2x+y}$$

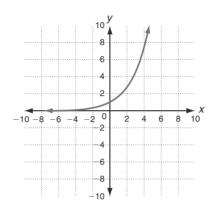
Solve.

- **11.** Use the formula $A = Pe^{rt}$ to compute the total amount for an investment of \$4500 at 5% interest compounded continuously for 6 years.
- **12.** Use the natural decay function, $N(t) = N_0 e^{-kt}$, to find the decay constant for a substance that has a half-life of 1000 years.

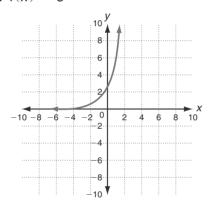
TEKS 2A.4.A

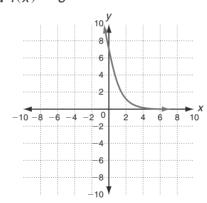


LESSON Practice B


7-6 The Natural Base, e

Graph.


1.
$$f(x) = e^{2x}$$


2.
$$f(x) = e^{0.5x}$$

3.
$$f(x) = e^{1 + x}$$

4.
$$f(x) = e^{2-x}$$

Simplify.

5. In
$$e^{x+2}$$

6.
$$e^{\ln 2x}$$

7.
$$e^{7 \ln x}$$

$$x + 2$$

$$\mathbf{x}^{7}$$

8. In
$$e^{3x+1}$$

10. In
$$e^{2x + y}$$

$$3x + 1$$

$$2x + y$$

Solve.

11. Use the formula $A = Pe^{rt}$ to compute the total amount for an investment of \$4500 at 5% interest compounded continuously for 6 years.

\$6074.36

12. Use the natural decay function, $N(t) = N_0 e^{-kt}$, to find the decay constant for a substance that has a half-life of 1000 years.

0.000693