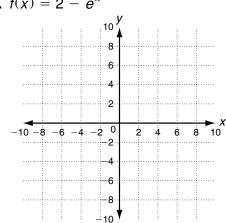
LESSON Practice A

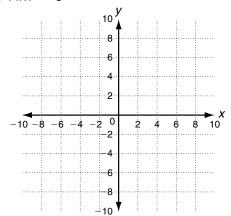
7-6 The Natural Base, e

Graph each exponential function.

1.
$$f(x) = e^{-x}$$


a. Complete the table.

X	-2	-1	0	1	2	3
f(x)	7.4					


b. Graph the ordered pairs and draw a curve through the points.

2. $f(x) = 2 - e^x$

3. $f(x) = e^{2-x}$

Simplify.

4. In
$$e^{7x}$$

5. In
$$e^{x+4}$$

6.
$$e^{\ln x}$$

7.
$$e^{3 \ln x}$$

8.
$$e^{5 \ln (x+1)}$$

9. In
$$e^{x-1}$$

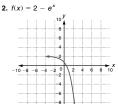
10.
$$x \cdot \ln e^3$$

11.
$$e^{-1 \cdot \ln 5x}$$

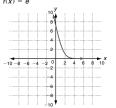
Solve.

13. Use the formula $A = Pe^{rt}$ to find the total amount of an investment of \$5000 at 6% interest compounded continuously for 8 years.

Practice A The Natural Base, e


Graph each exponential function.

- 1. $f(x) = e^{-x}$
 - a. Complete the table.


x	-2	-1	0	1	2	3
f(x)	7.4	2.7	1	0.37	0.14	0.05

b. Graph the ordered pairs and draw a curve through the points

3. $f(x) = e^{2-x}$

Simplify.

4. In
$$e^{7x}$$

5. In
$$e^{x+4}$$

8.
$$e^{5 \ln (x+1)}$$

$$(x+1)^5$$

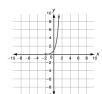
$$(5x)^{-1}$$
, or $\frac{1}{5x}$

Solve.

13. Use the formula $A = Pe^{rt}$ to find the total amount of an investment of \$5000 at 6% interest compounded continuously for 8 years.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

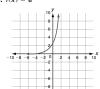
43


Holt Algebra 2

Practice B

7-6 The Natural Base, e

Graph.


1.
$$f(x) = e^{2x}$$

2. $f(x) = e^{0.5x}$

3. $f(x) = e^1$

Simplify.

8.
$$\frac{x+2}{\ln e^{3x+1}}$$

$$3x + 1$$

$$2x + y$$

Solve.

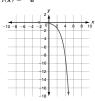
11. Use the formula $A = Pe^{rt}$ to compute the total amount for an investment of \$4500 at 5% interest compounded continuously for 6 years.

\$6074.36

12. Use the natural decay function, $N(t)=N_0\mathrm{e}^{-kt}$, to find the decay constant for a substance that has a half-life of 1000 years.

0.000693

Copyright © by Holt, Rinehart and Winston. All rights reserved.


Holt Algebra 2

Practice C The Natural Base, e

Graph.

1.
$$f(x) = -e^{x+2}$$

2.
$$f(x) = -e^{x-2}$$

Simplify.
3.
$$\ln e^{5x-3}$$

5.
$$e^{4 \ln (x-2)}$$

$$5x - 3$$

$$(x-2)^4$$

7. In
$$e^{\sqrt{x}}$$

$$(4-x)^{-1}$$
, or $\frac{1}{4-x}$

$$\sqrt{x}$$

Solve

9. Ariana has a choice of two investments. She can invest \$12,000 at 5% for 8 years, or she can invest \$9000 at 6.5% for 7 years. Both accounts are compounded continuously. Which investment will result in the greater amount of interest earned?

The investment of \$12,000 will earn \$5901.90 in interest; the investment of \$9000 will earn \$5185.56 in interest. The first investment will earn more interest.

10. Use the natural decay function, $N(t) = N_0 e^{-kt}$, to find the age of a fossil containing 35% of the original amount of a particular substance. This substance has a half-life of 2450 years.

a. Find the decay constant.

b. Find the age of the fossil.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

3710 years

45

Reteach

7-6 The Natural Base, e

The **natural logarithmic function**, $f(x) = \ln x$, is the inverse of the exponential function with the natural base e, $f(x) = e^x$

The constant e is an irrational number. $e \approx 2.71828...$

Properties of logarithms apply to the natural logarithm.

In particular:

In 1 = 0 The base is e and $e^0 = 1$.

In e = 1 Think: $e^1 = e$.

 $\ln e^x = x$ $e^{\ln x} = x$ The natural logarithm and the exponential function are inverses.

so they undo each other. Use properties of logarithms to simplify expressions with \emph{e} or "ln."

Simplify: In e^{x+2}

Step 2 Simplify.

Step 1 Use the Power Property. "Bring down" the exponent to multiply.

In
$$e^{x+2}$$

 $(x+2) \ln e$

In e = 1 ..ршу. (x + 2) ln e

Simplify: e4 In x Step 1 Use the Power Property. Write the exponent.

e4 In x Step 2 Simplify.

x + 2 Simplify each expression.

1. $\ln e^{-6x}$

2. In e^{t-3}

e^{ln x²}

(t - 3) ln e

5. In e^{x+1}

1.8 In *e*

-6x

1.8

 $(x + 1) \ln e$ <u>x</u> + 1

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 2

46

Holt Algebra 2