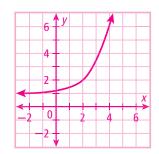


Example 1 Graphing Exponential Functions

Graph $f(x) = e^{x-2} + 1$.

Make a table. Because *e* is irrational, the table values are rounded to the nearest tenth.



X	-2	-1	0	1	2	3	4
$f(x) = e^{x-2} + 1$	1.0	1.0	1.1	1.4	2	3.7	8.4

ADDITIONAL EXAMPLES

Example 2 Simplifying Expression with e or In

Simplify.

A.
$$\ln e^{0.15t}$$

 $\ln e^{0.15t} = 0.15t$
 $\left| \begin{array}{c} \textbf{B.} e^{3\ln(x+1)} \\ e^{3\ln(x+1)} = e^{\ln(x+1)^3} \\ = (x+1)^3 \end{array} \right|$
 $\left| \begin{array}{c} \textbf{C.} \ln e^{2x} + \ln e^x \\ \ln e^{2x} + \ln e^x \\ = 2x + x = 3x \end{array} \right|$

Example 3 Economics Application

What is the total amount for an investment of \$500 invested at 5.25% for 40 years and compounded continuously?

$A = Pe^{rt}$		500-11 0525+40)
$A = 500e^{0.0525(40)}$	Substitute 500 for P, 0.0525 for r, and 40 for t.	500e^(.0525*40) 4083.084956
<i>A</i> ≈ 4083.08	Use the e ^x key on a calculator.	

The total amount is \$4083.08.

Example 4 Paleontology Application

Plutonium-239 (Pu-239) has a half-life of 24,110 years. How long does it take for a 1 g sample of Pu-239 to decay to 0.1 g?

Step 1 Find the decay constant for plutonium-239.

$N(t) = N_0 e^{-kt}$	Use the natural decay function.		
$\frac{1}{2} = 1e^{-k(24,110)}$	Substitute 1 for N_o , 24,110 for t, and $\frac{1}{2}$ for $N(t)$ because half of the initial quantity will remain.		
$\ln \frac{1}{2} = \ln e^{-24,110k}$	Simplify and take the In of both sides.		
$\ln 2^{-1} = -24,110k$	Write $\frac{1}{2}$ as 2^{-1} , and simplify the right side.		
$-\ln 2 = -24,110k$	$ln2^{-1} = -1ln2 = -ln2$		
$k = \frac{\ln 2}{24,110} \approx 0.000029$			

Step 2 Write the decay function and solve for *t*.

$N(t) = N_0 e^{-0.000029t}$	Substitute 0.000029 for k.
$0.1 = 1e^{-0.000029t}$	Substitute 1 for N0 and 0.01 for $N(t)$.
$\ln 0.1 = \ln e^{-0.000029t}$	Take the In of both sides.
$\ln 0.1 = -0.000029t$	Simplify.
$t = -\frac{\ln 0.1}{0.000029} \approx 80,00$	0

It takes approximately 80,000 years to decay.