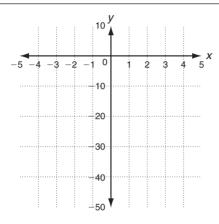
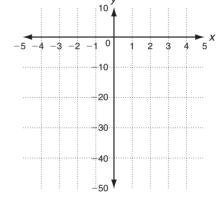
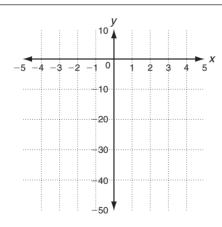
TEKS 2A.11.C

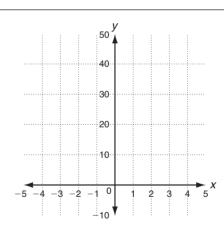

LESSON Practice B


Exponential Functions, Growth, and Decay

Tell whether the function shows growth or decay. Then graph.

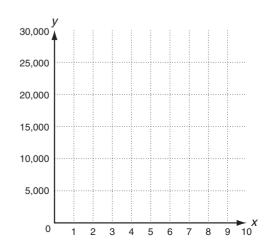
1.
$$g(x) = -(2)^x$$


2.
$$h(x) = -0.5(0.2)^x$$



3.
$$j(x) = -2(0.5)^x$$

4.
$$p(x) = 4(1.4)^x$$


Solve.

5. A certain car depreciates about 15% each year.

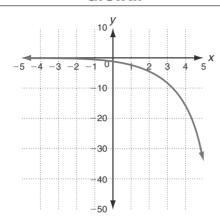
a. Write a function to model the depreciation in value for a car valued at \$20,000.

b. Graph the function.

c. Suppose the car was worth \$20,000 in 2005. What is the first year that the value of this car will be worth less than half of that value?

TEKS 2A.11.C

LESSON Practice B

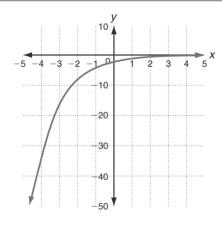

Exponential Functions, Growth, and Decay

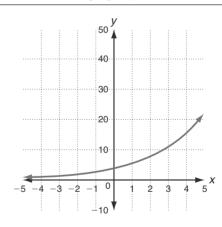
Tell whether the function shows growth or decay. Then graph.

1.
$$q(x) = -(2)^x$$

2.
$$h(x) = -0.5(0.2)^x$$

Growth

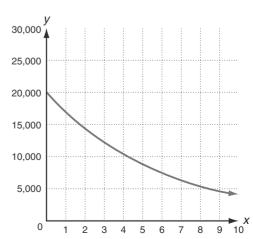



3.
$$j(x) = -2(0.5)^x$$

4.
$$p(x) = 4(1.4)^x$$

Decay

Growth


Solve.

- 5. A certain car depreciates about 15% each year.
 - **a.** Write a function to model the depreciation in value for a car valued at \$20,000.

$$y = 20,000(0.85)^{x}$$

- **b.** Graph the function.
- **c.** Suppose the car was worth \$20,000 in 2005. What is the first year that the value of this car will be worth less than half of that value?

