

Example 1 Graphing Exponential Functions

Tell whether the function shows growth or decay. Then graph.

A. $f(x) = 10 \left(\frac{3}{4}\right)^{x}$ Step 1 Find the value of the base. $f(x) = 10 \left(\frac{3}{4}\right)^{x}$ The base, $\frac{3}{4}$, is less than 1. This is an exponential decay function.

X	0	2	4	6	8	10	12
f (x)	10	5.6	3.2	1.8	1.0	0.6	0.3

B. $g(x) = 100(1.05)^x$

Step 1 Find the value of the base.

 $g(x) = 100(1.05)^{x}$ The base, 1.05, is greater than 1. This is an exponential growth function.

Step 2 Graph the function by using a graphing calculator.

Exponential Functions, 7-1 **Growth, and Decay**

Example 2 Economics Application

Clara invests \$5000 in an account that pays 6.25% interest per year. After how many years will her investment be worth \$10,000?

Step 1 Write a function to model the growth in value of her investment.

$$f(t) = a(1+r)^t$$

- $f(t) = 5000(1 + 0.0625)^{t}$
- $f(t) = 5000 (1.0625)^t$
- **Step 2** Graph the function.

When graphing exponential functions in an appropriate domain, you may need to adjust the

0.0625 for r.

range a few times to show the key points of the function.

Use the graph to predict Step 3 when the value of the investment will reach \$10,000. Use the **me** feature to find the *t*-value where $f(t) \approx 10,000$.

Exponential growth function

Substitute 5000 for a and

X=11.489362 _Y=10033.968 ,

The function value is approximately 10,000 when $t \approx 11.43$. The investment will be worth \$10,000 about 11.43 years after it was purchased.

ADDITIONAL EXAMPLES

7-1 Exponential Functions, Growth, and Decay

Example 3 Depreciation Application

A city population, which was initially 15,500, has been dropping by 3% a year. Write an exponential function and graph the function. Use the graph to predict when the population will drop below 8000.

Write a function to model the decay in the city's population.

 $f(t) = a(1-r)^t$

 $f(t) = 15,500(1 - 0.03)^t$

 $f(t) = 15,500(0.97)^t$

Graph the function. Use TRACE to find when the population will fall below 8000.

Exponential decay function

It will take about 21.7 years for the population to fall below 8000.