CHAPTER Cumulative Test

Select the best answer.

- 1. Identify the property demonstrated by 4 + (5 + 6) = (5 + 6) + 4.
 - **A** Associative Property
 - **B** Commutative Property
 - **C** Distributive Property
 - **D** Additive Identity Property
- **2.** Simplify $3\sqrt{18} + 5\sqrt{50} 2\sqrt{12}$. **F** $30\sqrt{2}$ **H** $34\sqrt{2} - 4\sqrt{3}$ **G** $31\sqrt{2} - 4\sqrt{3}$ **J** $34\sqrt{2} - 6\sqrt{3}$ ⁻². Assume all **3.** Simplify $\left(\frac{-2x^2y}{2xy^3}\right)$
 - variables are nonzero.

A
$$-\frac{9y^4}{4x^2}$$
 C $-\frac{9x^4}{4x^2}$
B $\frac{9y^4}{4x^2}$ **D** $\frac{9x^2y}{4x^4}$

- Which of the following relations is not a function?
 - **F** From student to age
 - G From age to student
 - H From student to social security number
 - J From social security number to student
- 5. Evaluate f(-2) if $f(x) = \left(\frac{1+x}{1-x}\right)^2$. $\mathbf{A} = -\frac{1}{9}$ **C** 1 **B** -1 **D** 3
- **6.** Which function C(m) represents the cost of a phone call, in dollars, if the call costs 3 cents per minute on top of a 49 cent connection charge?

F
$$C(m) = \frac{49 + 3m}{100}$$

G $C(m) = 49 + \frac{3m}{100}$
H $C(m) = \frac{49}{100} + 3m$
J $C(m) = 100(49 + 3m)$

7. Solve
$$\frac{20}{2x+1} = \frac{24}{4x-1}$$
.

A x = 1.125**C** x = 1.375

- 8. Which set of points could NOT represent a linear function?
 - **F** {(1, 10), (4, 8.5), (10, 5.5), (13, 4)} **G** {(-2, 5), (0, 5.1), (2, 5.2), (4, 5.3)}
 - **H** {(7, 1), (1, 3), (-5, 5), (-11, 7)}
 - **J** {(1, -3), (3, 1), (5, 7), (7, 11)}
- 9. What is the y-intercept of the line 2x - 5y = 28?**A** −5.6 **C** 5.6
- **B** 0.4 **D** 14
- **10.** A line has slope $-\frac{3}{5}$ and passes through (1, 6). Which of these points is also on the line?
 - **F** (0, 11) **H** (-9, 12) **G** (10, -21) **J** (-5, 16)
- 11. Which is the equation of the line perpendicular to 3x - 4y = 9 and passing through (2, -3)? **A** 4x - 3y = 17 **C** 3x + 4y = -6
 - **B** 4x + 3v = -1 **D** 3x 4v = 18
- **12.** Solve $|10 4x| \ge -6$.
 - **F** { $x|1 \le x \le 4$ } **H** No solution
 - **G** { $x | x \le 1$ or $x \ge 4$ } **J** All real numbers
- **13.** Alfred leaves a truck stop, heading east on Highway 9 at 25 miles per hour. Bianca leaves 12 minutes later and travels at 40 mph. How long does it take Bianca to overtake Alfred?
 - A 12 minutes C 20 minutes
 - **B** 15 minutes **D** 24 minutes
- **14.** Solve $\begin{cases} 3x + 5y = 2\\ 5x 4y = 28 \end{cases}$

CHAPTER Cumulative Test

continued

15. Tickets to a high school musical are \$4.50 for adults and \$2.50 for students. If a total of 230 tickets are sold for \$825, how many student tickets were sold?

A	95	С	125
В	105	D	135

16. On a feasible region whose vertices are $\{(0, 0), (1, 12), (5, 8), (8, 3), (9, 0)\},\$ what is the maximum of the objective function P = 6x + 4y, and where does it occur?

F 54 at (9, 0)	H 62 at (5, 8)
G 60 at (8, 3)	J 64 at (8, 3)

17. Which ordered triple represents the point that is 4 units left from the origin, 3 units down from the origin, and 5 units backward along the x-axis from the origin?

A (-5, -3, 4) **C** (-5, 4, -3)**B** (-5, -3, -4) **D** (-5, -4, -3)

(x + y + z = 20)**18.** The system $\{2x + 3y + 4z = 60 \text{ is } \}$ 4x + 2y + 6z = 80

- **F** inconsistent, with no solutions.
- **G** dependent, with infinitely many solutions.
- **H** independent, with one solution.
- J dependent, with one solution.

19. If
$$C = \begin{bmatrix} 2 & -1 \\ -3 & 2 \\ 4 & 1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 3 & -2 \\ 1 & 3 \\ -1 & 2 \end{bmatrix}$,
evaluate $3C - 2D$.
$$\mathbf{A} \begin{bmatrix} -5 & 4 \\ -9 & -5 \\ 11 & -4 \end{bmatrix} \qquad \mathbf{C} \begin{bmatrix} 3 & -1 \\ -10 & 3 \\ 13 & 1 \end{bmatrix}$$
$$\mathbf{B} \begin{bmatrix} 0 & 1 \\ -11 & 0 \\ 14 & -1 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 12 & -7 \\ -7 & 12 \\ 10 & 7 \end{bmatrix}$$

20. If
$$a = \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$$
, evaluate A^2 .
F $\begin{bmatrix} 9 & 4 \\ 4 & 1 \end{bmatrix}$ H $\begin{bmatrix} 13 & 4 \\ 4 & 1 \end{bmatrix}$
G $\begin{bmatrix} 9 & 4 \\ 4 & 5 \end{bmatrix}$ J $\begin{bmatrix} 13 & 4 \\ 4 & 5 \end{bmatrix}$
21. $\triangle ABC$ has vertices $A(2, 1), B(-5, 2),$
and $C(-3, 4)$. What are the coordinates
of the image of $\triangle ABC$ after it has been
rotated using the rotation matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?
A $A'(-2, -1), B'(5, -2), C'(3, -4)$
B $A'(-1, -2), B'(-2, 5), C'(-4, 3)$
C $A'(-1, 2), B'(-2, -5), C'(-4, -3)$
D $A'(1, -2), B'(2, 5), C'(4, 3)$
22. Which matrix is the inverse of $\begin{bmatrix} 4 & -6 \\ -3 & 5 \end{bmatrix}$?
F $\begin{bmatrix} -4 & -3 \\ -6 & -5 \end{bmatrix}$ H $\begin{bmatrix} 2.5 & 3 \\ 1.5 & 2 \end{bmatrix}$
G $\begin{bmatrix} -2 & -1.5 \\ -3 & -2.5 \end{bmatrix}$ J $\begin{bmatrix} 5 & 6 \\ 3 & 4 \end{bmatrix}$
23. What is $\begin{bmatrix} 3 & 5 \\ 7 & 2 \\ 8 \end{bmatrix}$ in reduced row-
echelon form?
A $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1.5 \end{bmatrix}$ D $\begin{bmatrix} 8 & 0 \\ 0 & 1.5 \\ 1 \end{bmatrix}$
24. Three friends are playing a game
with red, blue, and green chips. Each
color has a different value. The matrix
 $\begin{bmatrix} 2 & 4 & 5 \\ 6 & 3 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ represents the chip
d (2 + 5) $\begin{bmatrix} 37 \\ 4 & 2 \\ 3 \end{bmatrix}$ represents the chip
count and the total value of each
player's chips. How much would a hand
consisting of one of each color chip be
worth?

F 8 **H** 10 1

G	9			J	1

G *x* + 1

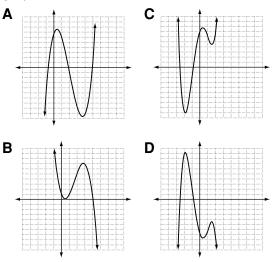
CHAF	TER Cumulative Test	
	continued	
25.	Find the minimum or maximum of $g(x) = -2x^2 + 10x - 9$.	32.
	 A maximum of -9 B maximum of 3.5 C minimum of -9 D minimum of 3.5 	33.
26.	Write a quadratic function in standard form having zeros of 3 and $-\frac{1}{3}$. F $f(x) = 3x^2 - 8x - 3$	55.
	G $g(x) = 3x^2 + 8x - 3$ H $h(x) = 3x^2 - 10x + 3$ J $j(x) = 3x^2 + 10x + 3$	34.
27.	Write $f(x) = x^2 - 6x + 11$ in vertex form.	
	A $a(x) = (x - 3)^2 + 2$ B $b(x) = (x - 3)^2 + 11$ C $c(x) = (x - 3)^2 + 2$ D $d(x) = (x - 6)^2 - 25$	35.
28.	What are the solutions to $x^2 + 6x + 12 = 0$? F $-3 \pm 3i$ H $-3 \pm 2\sqrt{3}i$ G $-3 \pm \sqrt{3}i$ J $-3 \pm \sqrt{12}i$	36.
29.	Henry throws a tennis ball over his house. The ball is 6 feet above the ground when he lets it go. The quadratic equation that models the path of the ball is $p(x) = -16t^2 + 46t + 6$. How long does it take for the ball to hit the ground?	37.
	A 2 seconds C 4.5 seconds	
30.	B 3 seconds D 6 seconds Simplify $\frac{8+i}{1+2i}$.	
	F $\frac{6}{5} + \frac{17}{5}i$ H $8 - \frac{1}{2}i$	
	G 2 - 3 <i>i</i> J 8 + $\frac{1}{2}i$	
31.	Simplify $i^5 \sqrt{-24}$. A $-2\sqrt{6}$ B $-2i\sqrt{6}$ C $2\sqrt{6}$	

D $2i\sqrt{6}$

Solve $4x^2 + 49 = 0$. **F** $-2 \pm 7i$ **H** $\pm \frac{7}{2}i$ **G** $+\frac{2}{2}i$ **J** $7 \pm 2i$ $\mathbf{G} \pm \frac{2}{7}i$ Which is equal to $(3r + t)^4$? **A** $81r^4 + t^4$ **B** $81r^4 + 27r^3t + 9r^2t^2 + 3rt^3 + t^4$ **C** $81r^4 + 81r^3t + 54r^2t^2 + 9rt^3 + t^4$ **D** $81r^4 + 108r^3t + 54r^2t^2 + 12rt^3 + t^4$ Which is not a factor of $(x^4 - 3x^3 - 17x^2 + 39x - 20)?$ **F** *x* – 1 **H** x + 4

If $(3 - \sqrt{2})$ and $(2 + \sqrt{2})$ are two of the roots of a fourth-degree polynomial with integer coefficients, what is the product of the other two roots?

J x - 5


A $4 - \sqrt{2}$	C 4 + $\sqrt{2}$
B 6 - $\sqrt{2}$	D 6 + $\sqrt{2}$

Which lists all the roots of $x^4 - x^2 = 6$?

 F { $\pm\sqrt{2}, \pm\sqrt{3}$ }
 H { $\pm\sqrt{3}, \pm\sqrt{2}i$ }

 G { $\pm\sqrt{2}, \pm\sqrt{3}i$ }
 J { $\pm\sqrt{2}i, \pm\sqrt{3}i$ }

If A(x) is a cubic function with a positive leading coefficient, B(x) is a linear function with a negative leading coefficient, and C(x) is the product of A(x) and B(x), which could be the graph of C(x)?

CHAPTER Cumulative Test continued **38.** If $f(x) = 2x^3 - x^2 + 3x$ and g(x) is a **43.** Evaluate $\log_{\sqrt{2}}$ 0.5. translation of f(x) one unit to the left. **C** $-\frac{1}{2}$ **A** -2 which of the following is equal to g(x)? **B** $-\frac{\sqrt{2}}{2}$ $D \frac{\sqrt{2}}{2}$ **F** $2x^3 - 7x^2 + 11x - 6$ **G** $2x^3 - 7x^2 + 11x - 3$ **44.** Which is equal to $\log_9 2 + \log_9 8$? **H** $2x^3 + 5x^2 + 7x + 1$ F log 4 $\mathbf{H} \ \frac{\log 10}{\log 9}$ **J** $2x^3 + 5x^2 + 7x + 4$ log 9 39. Which mononomial has the highest $G \frac{\log 4}{\log 3}$ $J \frac{\log 10}{\log 3}$ degree? **A** $2a^2b^2c^2d^2$ **C** $9abc^7$ **45.** Solve $3^{x+2} = 10$. **B** $2a^{5}b^{3}c^{2}$ **D** $9a^{9}$ $\mathbf{A} \ \frac{1-2\text{log 3}}{\text{log 3}}$ **C** log 3 - 2 **40.** Simplify $\frac{x^3 + 4x^2 + 3x - 2}{x + 2}$. **B** $\frac{1 + 2\log 3}{\log 3}$ **D** log 3 + 2 **F** (x + 1)(x - 1) **H** $x^2 + 4x + 3$ **G** $x^2 + 2x - 1$ **J** $x^3 + 4x^2 + 2x - 4$ 46. What is the sum of the solutions of the equation $2\log_{9}(3x-1) = \log_{9}(6x+1)$? **41.** The human population of Earth was **F** $\frac{4}{3}$ approximately 6 billion in 1998. If the rate of population growth from then J There is no solution. **G** 2 on was 2.3% per year, what would be the best approximation for the human 47. Which of the following functions is an population (in billions) of Earth in 2020? example of exponential growth? **A** $P(t) = 6(1.023)^{23}$ **A** $a(x) = 0.5(1.2)^{x}$ **B** $P(t) = 6(1.23)^{23}$ **B** $b(x) = 0.86x^{2.4}$ **C** $P(t) = 6 + 6(0.023)^{23}$ **C** c(x) = 1.2x + 0.5**D** $P(t) = 6 + 6(0.23)^{23}$ **D** $d(x) = 2.4(0.86)^{x}$ **42.** Which is the inverse of $f(x) = 3(7^{2x-1})$? 48. Which expression is equivalent to **F** $f^{-1}(x) = \frac{1}{2}\log_7\left(\frac{x}{3}\right) + 1$ $\ln\left(\frac{e^{2x}}{x^3}\right)?$ **G** $f^{-1}(x) = \frac{\log_7 x}{6} + \frac{1}{2}$ **F** ln $(e^{2x} - x^3)$ **H** $f^{-1}(x) = \frac{1}{2}\log_7\left(\frac{x}{3}\right) + \frac{1}{2}$ G $\frac{2x}{3\ln x}$ **J** $f^{-1}(x) = \frac{\log_7 x}{6} + 1$ **H** 2x - 3**J** $2x - 3 \ln x$

Answer Key continued

21. 4 and 5	20. J
22. 4×10^{-3}	21. C
Performance Assessment	22. H
1. $2P_0 = P_0 e^{rt}$; $2P_0 = P_0 e^{12r}$	23. C
2. $2P_0 = P_0 e^{12r}$; ln 2 = ln e^{12r} ;	24. H
$r = \frac{\ln 2}{12} \approx 0.05776$	25. B
3. $3P_0 = P_0 e^{rt}$; $3P_0 = P_0 e^{0.05776t}$	26. F
4. $3P_0 = P_0 e^{0.05776t}$; ln 3 = ln $e^{0.05776t}$;	27. A
$t = \frac{\ln 3}{0.05776} \approx 19.02$	28. G
5. If it takes 12 hours to double, it would	29. B
take 24 hours to quadruple, so for tripling, the answer should be somewhere	30. G
between 12 and 24, and probably not too	31. A
far from 18.	32. H
Cumulative Test	33. D
1. B	34. G
2. H	35. A
3. B	36. H
4. G	37. D
5. A	38. J
6. F	39. B
7. C	40. G
8. J	41. A
9. A	42. G
10. H	43. A
11. B	44. G
12. J	45. A
13. C	46. F
14. F	47. A
15. B	48. J
16. H	
17. B	
18. H	
19. B	