CHAPTER Chapter Test Form A Select the best answer. 7. Which is the inverse of $f(x) = 6^{x}$? **A** $f^{-1}(x) = \log_x 6$ **C** $f^{-1}(x) = \frac{\log x}{6}$ **B** $f^{-1}(x) = \log_6 x$ **D** $f^{-1}(x) = 6\log x$ 1. Which function is an example of exponential growth? **A** $a(x) = 0.5(1.2)^{x}$ 8. Which is the logarithmic form of $2^{10} = 1024?$ **B** $b(x) = 2.4(0.86)^{x}$ **A** $\log_2 10 = 1024$ 2. Ted's comic book collection, which was **B** $\log_2 1024 = 10$ worth \$1300 five years ago, has been increasing in value by 12% per year 9. Evaluate log₈ 32. since then. Which expression gives the $\frac{3}{5}$ Α current value of the collection? **A** $1300(1.12)^5$ **C** 1300(1.12)(5) **B** $\frac{5}{3}$ **B** 1300(.12)⁵ **D** 1300[1 + (.12)(5)]**10.** Express $2\log 4 + 3\log 2$ as a single The student population of Gloomy logarithm. Valley High School has been steadily decreasing by 2% per year. If its **A** 6log 8 **C** 5log 6 population 8 years ago was 1200, which **B** log 48 **D** log 128 is the best expression for its population **11.** Which is the greatest? now? **A** $\log_2 32^8$ **A** $1200 - 1200(.02)^8$ **B** $\log_3 27^{13}$ **B** 1200(.98)⁸ **C** $\log_4 2^{50}$ 4. If g(x) is the inverse of $f(x) = \sqrt{x^3 + 1}$, **D** $\log_5 25^{19}$ which of the following is on q(x)? **12.** Simplify log $10^9 + 10^{\log 9}$. **A** (2, 3) **A** 18 **B** (3, 2) **B** 81 5. Which statement is NOT always true? **13.** Which is equal to $\log_5 100$? **A** The inverse of a linear function is a function. A $\frac{2}{\log 5}$ **B** The inverse of a quadratic function is $\mathbf{B} \ \frac{100}{\log 5}$ not a function. **C** If a function has two *x*-intercepts, then **14.** Solve $4^{4x-5} = 8^{3x-4}$. its inverse has two y-intercepts. **A** $x = \frac{3}{2}$ **D** The inverse of an exponential function is a logarithmic function. **B** x = 2**6.** Which is the inverse of $f(x) = \sqrt{2x + 5}$? **15.** Solve $3^{2x} = 30$. **A** $a(x) = x^2 - \frac{5}{2}$ **C** $c(x) = \frac{x^2}{2} - 5$ A $\frac{\log_3 30}{2}$ **C** 2log₃ 30 **B** $b(x) = \frac{(x-5)^2}{2}$ **D** $d(x) = \frac{x^2-5}{2}$ **B** log₃ 15 **D** $\log_3 60$

_____ Date _____ Class _____

CHAPTER Chapter Test

Form A continued

- **16.** What is the solution set to the equation $\log_2(3x + 1) + \log_2(x + 7) = 5$?
 - **A** {1}

Name

- **B** $\left\{-\frac{25}{3}, 1\right\}$
- **17.** Which is equal to $e^{\ln 3} + \ln e^4$?

A 7

- **B** 12
- **18.** What could be the function shown in the graph?

B
$$g(x) = -2^{x-3} - 1$$

C $h(x) = 2^{3-x} + 1$

D
$$h(x) = 2^{3-x} - 1$$

19. What could be the function shown in the graph?

A $a(x) = \log_2(x - 3) + 2$

- **B** $a(x) = \log_2(x+3) + 2$ **C** $c(x) = \log_2(x-2) + 3$
- **D** $d(x) = 2\log_2(x+2) + 3$
- **20.** If the data below is from an exponential function, what is the value of *a*?

X	3	5	7
у	8	а	18
A 12		C 13	
B 12.5		D 13.5	

21. Evaluate f(1) for $f(x) = \ln x$.

- **B** 1
- **22.** The data below is from an exponential function. What is the value of the constant ratio?

x	-1	0	1	2	3
y	2	4	8	16	32
∖ −1					

C 2

D 4

Form B

Select the best answer.

1. Which of the following functions is an example of exponential decay?

A $a(x) = 0.5(1.2)^{x}$ **C** $c(x) = 0.5(x)^{0.9}$

B $b(x) = 2.4(0.86)^{x}$ **D** $d(x) = \log_{0.5} x$

2. Which expression shows the value of a rare postage stamp, originally purchased for \$5000, that has been increasing in value by 11% for 10 years?

- **G** 5000(1.11)¹⁰
- **H** 5000(11)¹⁰
- **J** 5000(1.11)(10)
- A balloon with a small leak loses 1% of its volume each day. If it originally contained 24 liters of gas, what is the volume of the gas after one week?

A 24(.01) ⁷	C 24(.01) ⁸
B 24(.99) ⁷	D 24(.99) ⁸

4. If g(x) is the inverse of $f(x) = x^{x}$, which of the following is on g(x)?

F	(-1, 1)	Н	(27, 3)
G	(2, 4)	J	(64, 4)

- 5. Which of the statement is ALWAYS true?
 - A The inverse of a linear function is a function.
 - **B** The inverse of a guadratic function is a function.
 - **C** The inverse of a cubic function is a function.
 - **D** The inverse of a logarithmic function is a function.
- 6. Which is the inverse of $f(x) = \sqrt{2x-3} + 2$?

F
$$a(x) = \frac{(x-2)^2}{2} + 3$$

G $b(x) = \frac{x^2 + 1}{2}$
H $c(x) = (2x-3)^2 - 2$
J $d(x) = \frac{(x-2)^2 + 3}{2}$

J
$$d(x) = \frac{(x-2)^2 + x}{2}$$

7. Which of the following is the inverse of $f(x) = 2(3^{x})?$

A
$$f^{-1}(x) = 2\log_3 x$$

B
$$f^{-1}(x) = \log_3 \frac{x}{2}$$

C
$$f^{-1}(x) = \frac{\log_3 x}{2}$$

D
$$f^{-1}(x) = \log_6 x$$

8. Which is the logarithmic form of $3^6 = 729$? **F** $\log_3 729 = 6$ **H** $\log 3^6 = 729$

- **G** $\log_3 729 = 3^6$ **J** $\log_3 6 = 729$
- **9.** Evaluate $\log_{0.25} 2$.

A $-\frac{1}{2}$	C 0.0625
B $-\frac{1}{8}$	D 8

10. Express $\log_4 27 - 2\log_4 3$ as a single logarithm.

F log₄ 3	H log₄ 12
G log₄ 6	J log₄ 18

- **11.** Which of the following is the largest? **A** $\log_{0.5} 8^{40}$ **C** $\log_3 27^{12}$
 - **B** $\log_2 32^8$ **D** $\log_4 2^{60}$
- **12.** Simplify log $10^{36} 2(10^{\log 12})$.
- **F** -108 **H** 1.5 **G** 0.25 **J** 12
- **13.** Simplify $\log_5 4 + \log_5 250$.
 - $\mathbf{C} \ \frac{\log_5 1000}{\log 5}$ A $\frac{3}{\log 5}$
- **B** log₅ 254 **D** log₂₅ 1000
- **14.** Solve $4^{4x-1} = 32^{2x-1}$.

F
$$x = \frac{7}{12}$$

G $x = \frac{5}{4}$
H $x = \frac{3}{2}$

J There is no solution.

Date Class

CHAPTER Chapter Test

Form B continued

- **15.** Solve $3^{x+1} = 100$. **A** $\frac{2 - \log 3}{\log 3}$ **C** $\frac{2 - \ln 3}{\ln 3}$ **B** $\frac{2 + \log 3}{\log 3}$ **D** $\frac{2 + \ln 3}{\ln 3}$
- 16. What is the sum of the solutions of the equation $\log_2(x-1) + \log_2(4x+2) = 2?$
 - **F** $-\frac{1}{3}$ $H \frac{1}{2}$ $J \frac{3}{2}$ **G** $\frac{1}{3}$
- **17.** Simplify $e^{2\ln x} + \ln e^{x}$.
 - **A** 3*x* **C** $2x^2$ **B** $x^{2} + x$ **D** x^3
- 18. What could be the function shown in the graph?

19. What could be the function shown in the graph?

A
$$a(x) = \log_2(x + 4)$$

B $b(x) = 2\log_2(x + 4)$
C $c(x) = \log_2(x + 3) + 2$

D
$$d(x) = 2\log_2(x+3) + 2$$

20. If the data below is from an exponential function, what is the value of a?

x	3	5	7		
У	4	а	10		
F 6 H 6.3					
G 2\sqrt{10} J 7					

- **21.** What is the *x*-intercept of the function $f(x) = \ln x$?
 - **A** 0
 - **B** 1
 - C e

D does not exist

22. The data below is from an exponential function. What is the value of the constant ratio?

x	-2	0	2	4	6
у	$\frac{1}{4}$	1	4	16	64

 $G \frac{1}{2}$

- **H** 2
- **J** 4

CHAPTER Chapter Test Form C

Select the best answer.

1. Which function is an example of exponential decay?

A
$$a(x) = 0.5(\sqrt{2})^{x}$$
 C $c(x) = \sqrt{5}(x)^{0.9}$
B $b(x) = 2.4\left(\frac{\sqrt{3}}{2}\right)^{x}$ **D** $d(x) = \ln(x^{0.9})$

- 2. Which function shows the value over time of a certain investment (I_0) at n%?
 - **F** $f(x) = I_0 \left(1 + \frac{n}{100}\right)^x$ **G** $f(x) = I_0(1 + n)^x$ **H** $f(x) = I_0 + I_0 \left(\frac{n}{100}\right)^x$ **J** $f(x) = I_0 + I_0(n)^x$
- 3. The population of Whoville has been decreasing at a rate of 0.8% per year since Dr. Seuss passed away in 1991. If the population was 13,500 at the beginning of 2005, which expression gives its population at the end of 1998?

A
$$13,500(0.992)^{-6}$$
 C $13,500(1.008)^{-6}$
B $13,500(0.992)^{6}$ **D** $13,500(1.008)^{6}$

4. If g(x) is the inverse of $f(x) = x^{\log_2 x}$, which of the following is NOT on g(x)?

F	(1, 1)	н	(4, 16)
G	(2, 2)	J	(16, 0.25)

- 5. Which statement is sometimes, but not always, true?
 - A The inverse of a guadratic function is a function.
 - **B** The inverse of a cubic function is a function.
 - **C** The inverse of a logarithmic function is a function.
 - **D** The inverse of an exponential function is a function.

6. Which is the inverse of
$$f(x) = \frac{x}{x+1}$$
?

F
$$a(x) = \frac{1}{1-x}$$
 H $c(x) = \frac{x+1}{x}$
G $b(x) = \frac{x}{1-x}$ **J** $d(x) = \frac{x+1}{x-1}$

7. Which is the inverse of $f(x) = 2(3^{x+1})$? **A** $f^{-1}(x) = \frac{\log_3 x}{2} - 1$ **B** $f^{-1}(x) = \log_3 \frac{x}{2} - 1$ **C** $f^{-1}(x) = \frac{\log_3 x - 1}{2}$ **D** $f^{-1}(x) = \frac{\log_3 (x-1)}{2}$ **8.** If $a^m = b^n$, which of the following is NOT true? **F** $\log_a b^n = m$ **H** $\log_a b = \frac{m}{n}$ **G** $\log_b a^m = n$ **J** $\sqrt{m} = \log_a b^{n/2}$ **9.** Evaluate $\log_{0.125} \sqrt[3]{4}$. $C -\frac{4}{9}$ **A** $-\frac{4}{3}$ $\mathbf{D} - \frac{2}{q}$ **B** $-\frac{2}{3}$ **10.** Express $\log_4 18 - (\frac{1}{2}\log_4 36 + 2\log_4 3)$ as a single logarithm. **F** $\log_4 \frac{1}{3}$ **H** $\log_4 6$ **G** $\log_4 \frac{1}{2}$ **J** log₄ 27 11. Which is greatest? **A** $\log_{\sqrt{2}} 4^{20}$ **B** $\log_{\sqrt{3}}$ 81⁸

- $\boldsymbol{C}~\log_{25}\sqrt{5}^{\,200}$ **D** $\log_{0.5} 16^{50}$ **12.** Simplify $\frac{\log 10^{32} - 2(10^{\log 8})}{\log 10^{32} - 2(10^{\log 8})}$ $\log_{2} 2^{16}$ **F** 0.5 **H** 1.5
 - **G** 1 J 2
- 13. Which of the following is equal to $(\log_3 25)(\log_4 3)?$

A
$$\frac{\log 75}{\log 12}$$
 C $\frac{\log 5}{\log 2}$

 B $\log_{12} 75$
 D $\log_2 5$

14. Solve
$$4^{2x-5} = 0.5^{2-2x}$$
.
F $x = -\frac{1}{2}$ **H** $x = 4$
G $x = \frac{7}{6}$ **J** There is no solution.

19. What could be the function shown in the graph?

B
$$b(x) = \log_2(2 - x) - 2$$

C
$$c(x) = -\log_2(2 - x) + 2$$

D
$$d(x) = -\log_2(x+3) - 1$$

20. If the data below is from an exponential function, what is the value of a?

x	1	2	4	
у	8	а	24	
F 8∛3		H 8∖	/3	
G 12	J 16			

- 21. What are the x-intercepts of the function $f(x) = \ln (|2x - 5|)?$
 - **A** In 5 and ln(-5)
 - **B** 2 and 3
 - $C \frac{5}{2} \text{ and } -\frac{5}{2}$
 - D do not exist
- 22. The data below is from an exponential function. What is the value of the constant ratio?

CHAPTER Chapter Test Form A **1.** If $f(x) = a(r)^x$ is an example of **11.** Find x if x is an integer and exponential growth, what must be true of r? $40 < \log_4 64^x < 45.$ **12.** Simplify $\log 10^9 + 10^{\log 5}$. 2. Marcus makes an investment of \$2000. Write an expression that shows its value after it increases in value by 8% for 9 years. **13.** Simplify $\log_3 25 + \log_3 4$ and express using base-10 logarithms. 3. The population of Westport was 43,000 at the beginning of 1980 and has **14.** Solve $2^{11-4x} = 8^{4x+1}$. steadily decreased by 1% per year since. Write an expression that shows the population of Westport at the beginning **15.** Solve $2^{x} = 20$. Express the answer as a of 1994. calculator-ready expression. **4.** If q(x) is the inverse of $f(x) = x^2 - 3x$ **16.** Solve $\log_2(3x-4) + \log_2(5x-2) = 4$. + 5, find the point on g(x) that has a y-coordinate of 3. **17.** Simplify $3e^{\ln x} + 2\ln e^{x^2}$. 5. Give an example of a linear function whose inverse is NOT a function. 18. The graph below is a transformation of $f(x) = 2^{x}$. What could it be? 6. What is the inverse of f(x) = 6 - 5x? 5 7. What is the inverse of $f(x) = 3(4)^{x}$? 3 2 **8.** What is the logarithmic form of $6^3 = 216$? **9.** Evaluate $\log_9 27 - \log_{27} 9$.

10. Express $2\log 3 + 3\log 2 - \log 6$ as a single logarithm.

133

Form A continued

19. The graph below is a transformation of $f(x) = \log_2 x$. What could it be?

20. If the data below is from an exponential function, what is the value of *a*?

x	2	3	4
У	12	а	27

- **21.** Evaluate f(0) for $f(x) = e^{x}$.
- **22.** The data below is from an exponential function. What is the value of the constant ratio?

x	-1	0	1	2	3
у	1 16	$\frac{1}{4}$	1	4	16

CHAPTER Chapter Test	
7 Form B	
1. If $f(x) = a(r)^x$ is an example of exponential decay, what must be true of <i>a</i> and <i>r</i> ?	8. What is the logarithmic form of $81^{\frac{3}{4}} = 27?$
	9. Evaluate $\log_{0.5} 4 - \log_4 0.5$.
2. An oil painting from the early twentieth century, originally purchased for \$8500, has been increasing in value by 7.5% for the 24 years since its purchase. Write an expression that gives its current value.	10. Express 3log ₅ 4 – 5log ₅ 2 as a single logarithm.
3. The population of Greenfield was 52,500 at the beginning of 1980. Its population steadily decreased by 2.5% per year	11. Find x if x is an integer and $50 \le \log_2 128^x \le 60.$
from 1980 through 1990. Write an expression for Greenfield's population at the end of 1990.	12. Simplify $\frac{(10^{\log 48})}{3} - \log 10^{17}$.
4. If $g(x)$ is the inverse of $f(x) = x^3 - 2x + 1$, find a point on $g(x)$ for which both coordinates are positive integers less than 10.	 13. Simplify log₆ 25 + log₆ 20 - log₆ 5 and express using base-10 logarithms.
	14. Solve $8^{x+7} = 16^{2x-1}$.
5. Give an example of a cubic function whose inverse is NOT a function.	15. Solve $2^{x-1} = 12$. Express the answer as a calculator-ready expression.
6. What is the inverse of $f(x) = 2\sqrt{3x+4} - 1$?	
	16. Solve $\log_4(5x - 3) + \log_4(9 - x) = 3$.
7. What is the inverse of $f(x) = 4(3)^{x-1}$?	17. Simplify $4e^{2\ln x} - (\ln e^{2x})^2$.

Name _____ Date _____ Class _____

CHAPTER Chapter Test

Form B continued

18. The graph below is a transformation of $f(x) = 2^{x}$. What could it be?

19. The graph below is a transformation of $f(x) = \log_2 x$. What could it be?

20. If the data below is from an exponential function, what is the value of a?

x	3	6	9
y	4	4 a	6

- **21.** Find the *y*-intercept of $f(x) = e^x$.
- 22. The data below is from an exponential function. What is the value of the constant ratio?

x	-1	0	1	2	3
У	e³	e^{6}	e9	e ¹²	e ¹⁵

Form C

- 1. If $f(x) = a(1 + r)^x$ is an example of exponential decay, what must be true of a and r?
- 2. A rare postage stamp, originally purchased for \$1150, has been increasing in value at a steady rate of n% per year. Write a function that shows the value of the stamp after t years.
- 3. The population of Greenfield was 52,500 at the beginning of 1980 and has steadily decreased by 2.1% per year since. Write an equation to find the year, t, when Greenfield's population will drop to 30,000.
- **4.** If q(x) is the inverse of $f(x) = x^3 3x^2$ + 5, find all the points on g(x) for which both coordinates are positive integers less than 10.
- 5. Give an example of a cubic function that passes through the origin whose inverse is NOT a function.
- 6. What is the inverse of $f(x) = \frac{x-1}{x+1}$?
- 7. What is the inverse of $f(x) = 3(4)^{x-1} + 2$?
- **8.** What is the logarithmic form of $\sqrt{3}^6 = 27$?

- **9.** Evaluate $\log_{0.25}\sqrt{2} \log_{\sqrt{2}} 0.25$.
- **10.** Express $3\log_3 4 2\log_3 8 + 4\log_3 2$ as a single logarithm.
- **11.** Find *x* if *x* is an integer and $50 < \log_9 243^x < 60.$
- **12.** Simplify $\log_{100} (10^{\log 10^{12}})$.
- **13.** Simplify $\log_6 2 + \log_6 4 \log_6 80$ and express using base-10 logarithms.
- **14.** Solve $2^{x+1} 4^{6-x} = 8^{2x-5}$.
- **15.** Solve $2^{x+1} = 3^x$. Express the answer as a calculator-ready expression.
- **16.** Solve $\log_2(3x + 1) \log_2(x 3) =$ $\log_2(x + 3)$.
- **17.** Simplify $0.25e^{2 \ln x^2} + 2\ln e^{x^2}$.

Form C continued

18. The graph below is a transformation of $f(x) = 2^{x}$. What could it be?

19. The graph below is a transformation of $f(x) = \log_2 x$. What could it be?

20. If the data below is from an exponential function, what is the value of a?

- **21.** Find the *x*-intercepts of $f(x) = e^{(x^2 9x + 20)} 1$.
- 22. The data below is from an exponential function. What is the value of constant ratio?

x	-1	0	1	2	3
y	1.25×10 ¹³	5×10 ¹⁰	2×10 ⁸	8×10 ⁵	3.2×10^{3}

Answer Key continued

22. F	8. J
23. D	9. C
24. H	10. J
25. A	11. B
26. J	12. F
27. D	13. A
28. F	14. G
29. C	Section Quiz: Section B
30. G	1. D
31. C	2. G
32 . G	3. C
33. B	4. H
34. F	5. B
35. D	6. F
36. J	7. B
37. B	8. H
38. H	9. D
39. A	Chapter Test Form A
40. J	1. A
41. A	2. A
42 . G	3. B
43. C	4. B
44. F	5. A
CHAPTER 7	6. D
Section Quiz: Section A	7. B
1. C	8. B
2. F	9. B
3. D	10. D
4. J	11. A
5. D	12. A
6. H	13. A
7. C	14. B

	Oberster Test Ferme O
15. A	Chapter Test Form C
16. A	1. B
17. A	2. F
18. B	3. A
19. B	4. H
20. A	5. B
21. A	6. G
22. C	7. B
Chapter Test Form B	8. J
1. B	9. D
2. G	10. F
3. B	11. A
4. H	12. G
5. D	13. C
6. J	14. H
7. B	15. A
8. F	16. F
9. A	17. C
10. F	18. G
11. B	19. C
12. J	20. F
13. A	21. B
14. H	22. J
15. A	Chapter Test Form A
16. J	1. <i>r</i> > 1
17. B	2. 2000(1.08) ⁹
18. G	3. $P(14) = 43,000(0.99)^{14}$
19. B	4. (8, 3)
20. G	5. $x = c$, where c is any constant.
21. B	6. $f^{-1}(x) = \frac{x-6}{x} = \frac{6-x}{x}$
22. J	-5 5 7 $f^{-1}(x) = \log (X)$
	$(x) = \log_4\left(\frac{3}{3}\right)$
	8. $\log_6 216 = 3$

Answer Key continued

9. $\frac{5}{6}$ 10. log12 11. x = 1412. 14 13. $\frac{\log 100}{\log 3} = \frac{2}{\log 3}$ 14. x = 0.515. $\frac{\log 20}{\log 2}$ or $\frac{\ln 20}{\ln 2}$ 16. x = 217. $2x^2 + 3x$ 18. $f(x) = 2^{x+1} - 1$ or $f(x) = 2(2^x) - 1$ 19. $f(x) = \log_2(x - 1) + 3$ 20. a = 1821. f(0) = 122. 4

Chapter Test Form B

1. 0 < *r* < 1

- **2.** 8500(1.075)²⁴
- **3.** 52,500(0.975)¹¹
- **4.** (5, 2)
- **5.** many answers, notably any with more than one zero

6. $f^{-1}(x) = \frac{\left(\frac{x+1}{2}\right)^2 - 4}{3} = \frac{x^2 + 2x - 15}{12}$ 7. $f^{-1}(x) = \log_3 0.25x + 1$ $= \frac{\log x + \log 3 - \log 4}{\log 3}$ 8. $\log_{81} 27 = \frac{3}{4}$ 9. -1.510. $\log_5 2$ 11. x = 812. -113. $\frac{2}{\log 6}$ 14. x = 515. $\frac{\log 12}{\log 2} + 1$ or $\frac{\log 24}{\log 2}$ or $\frac{\ln 12}{\ln 2} + 1$ or

In 24 ln 2 **16.** {2.6. 7} **17.** 0 **18.** $f(x) = 2^{x-3} - 1$ or $f(x) = 0.5(2^{x-2}) - 1$ **19.** $f(x) = -\log_2(x+1) - 1$ **20.** $a = 2\sqrt{6}$ **21.** 1 **22**. e^3 **Chapter Test Form C 1.** −1 < *r* < 0 **2.** $1150\left(1 + \frac{n}{100}\right)^t$ **3.** $30,000 = 52,500(0.979)^{t-1980}$ **4.** (3, 1), (1, 2), (5, 3) 5. many answers, notably any with more than one zero, one of which is the origin 6. $f^{-1}(x) = \frac{x+1}{1-x}$ 7. $f^{-1}(x) = \log_4 \frac{x-2}{3} + 1$ $=\frac{\log(x-2)-\log 3+\log 4}{\log 4}$ 8. $\log_{\sqrt{3}} 27 = 6$ 9. 3.75 **10.** log₃ 16 **11.** *x* = 22 **12.** 6 **13.** $-\frac{1}{\log 6}$ **14.** *x* = 5 15. $\frac{\log 2}{\log 3 - \log 2}$ or $\frac{\log 2}{\log 1.5}$ or $\frac{\ln 2}{\ln 3 - \ln 2}$ or ln 2 In 1.5 **16.** {5} 17. $\frac{x^4}{4} + 2x^2$ 18. $f(x) = 2^{1-x} - 1$ or $f(x) = 0.5(2^{2-x}) - 1$ 19. $f(x) = -2\log_2(2 - x) + 2$ **20.** $a = 2\sqrt[3]{4}$

Answer Key continued

21.	4 and 5	20. J
22.	4×10^{-3}	21. C
Per	22. H	
1.	$2P_0 = P_0 e^{rt}; 2P_0 = P_0 e^{12r}$	23. C
2.	$2P_0 = P_0 e^{12r}$; ln 2 = ln e^{12r} ;	24. H
	$r = \frac{\ln 2}{12} \approx 0.05776$	25. B
3.	$3P_0 = P_0 e^{rt}; 3P_0 = P_0 e^{0.05776t}$	26. F
4.	$3P_0 = P_0 e^{0.05776t}$; ln 3 = ln $e^{0.05776t}$;	27. A
	$t = \frac{\ln 3}{0.05776} \approx 19.02$	28. G
5.	If it takes 12 hours to double, it would	29. B
	tripling, the answer should be somewhere	30. G
	between 12 and 24, and probably not too	31. A
	far from 18.	32. H
Cur	nulative Test	33. D
1.	В	34. G
2.	Н	35. A
3.	В	36. H
4.	G	37. D
5.	A	38. J
6.	F	39. B
7.	С	40. G
8.	J	41. A
9.	A	42. G
10.	Н	43. A
11.	В	44. G
12.	J	45. A
13.	С	46. F
14.	F	47. A
15.	В	48. J
16.	Н	
17.	В	
18.	Н	
19.	В	