





| Les | son Objectives (p. 382):                     |  |  |
|-----|----------------------------------------------|--|--|
|     |                                              |  |  |
| Vo  | cabulary                                     |  |  |
| 1.  | Complex plane (p. 382):                      |  |  |
| 2.  | Absolute value of a complex number (p. 382): |  |  |

## **Key Concepts**

3. Absolute Value of a Complex Number (p. 382):

| WORDS | ALGEBRA | NUMBERS | GRAPH |
|-------|---------|---------|-------|
|       |         |         |       |
|       |         |         |       |
|       |         |         |       |
|       |         |         |       |
|       |         |         |       |
|       |         |         |       |
|       |         |         |       |



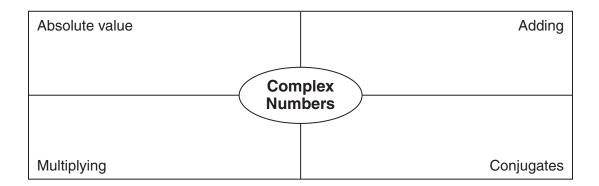
# **Operations with Complex Numbers**



### Lesson Objectives (p. 382):

perform operations with complex numbers.

### **Vocabulary**


- **1.** Complex plane (p. 382): a set of coordinate axes in which the horizontal axis represents real numbers and the vertical axis represents imaginary numbers.
- 2. Absolute value of a complex number (p. 382): the distance from the origin in the complex plane.

#### **Key Concepts**

3. Absolute Value of a Complex Number (p. 382):

| WORDS                                                                                                                                                    | ALGEBRA                     | NUMBERS | GRAPH                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|--------------------------------------------------------------------------------------------|
| The absolute value of a complex number $a + bi$ is the distance from the origin to the point $(a, b)$ in the complex planer, and is denoted $ a + bi $ . | $ a+bi $ $= \sqrt{a^2+b^2}$ | 3+4i =  | Imaginary axis $\begin{vmatrix} 3 + 4i \end{vmatrix} = \sqrt{3^2 + 4^2}$ $= \sqrt{9 + 16}$ |
|                                                                                                                                                          |                             |         | = 5                                                                                        |

4. Get Organized In each box, give an example. (p. 385).



4. Get Organized In each box, give an example. (p. 385).

| Absolute value                       | Adding                                  |  |  |  |  |
|--------------------------------------|-----------------------------------------|--|--|--|--|
| $ 3 + 4i  = \sqrt{3^2 + 4^2}$<br>= 5 | (2+3i)+(4+5i)=6+8i                      |  |  |  |  |
| Complex                              |                                         |  |  |  |  |
| Numbers                              |                                         |  |  |  |  |
| $(2+i)(4+2i) = 8+4i+4i+2i^2$         | The conjugate of $4 + 3i$ is $4 - 3i$ . |  |  |  |  |
| = 6 + 8i Multiplying                 | Conjugates                              |  |  |  |  |