LESSON Problem Solving **Operations with Complex Numbers**

Hannah and Aoki are designing fractals. Aoki recalls that many fractals are based on the Julia Set, whose formula is $Z_{n+1} = (Z_n)^2 + c$, where c is a constant. Hannah suggests they make their own fractal pattern using this formula, where c = 1and $Z_1 = 1 + 2i$.

1. Complete the table to show values of *n* and Z_n .

n	$\boldsymbol{Z}_{n+1} = (\boldsymbol{Z}_n)^2 + \boldsymbol{c}$	Z _n
1	$Z_1 = 1 + 2i$	$Z_1 = 1 + 2i$
2	$Z_2 = (1 + 2i)^2 + 1$	$Z_2 = -2 + 4i$
3	$Z_3 = (___)^2 + 1$	<i>Z</i> ₃ =
4	$Z_4 = \left(\underline{\qquad} \right)^2 + 1$	<i>Z</i> ₄ =

Choose the letter for the best answer.

- 2. Aoki creates a second pattern by changing the value of c to 3. What happens to Z_n as *n* increases?
 - A The real and imaginary parts become equal.
 - **B** The real part becomes zero.
 - **C** The imaginary part becomes zero.
- 4. Aoki takes Hannah's new formula.

leaves c = 1, and sets $Z_1 = \frac{1}{1+2i}$ What is the value of Z_3 ?

- **A** $Z_3 = -11 16i$ **B** $Z_3 = 2 + 2i$
- **C** $Z_3 = 0.48 0.16i$

- 3. Hannah changes the formula to $Z_{n+1} = \frac{1}{(Z_n)^2} + c$. Leaving c = 1 and $Z_1 = 1 + 2i$, what is the value of Z_2 ? **A** 0.48 - 0.16*i* **B** 0.88 - 0.16*i* **C** 1.2 - 0.4*i*
- 5. Hannah reverts to $Z_{n+1} = (Z_n)^2 + c$. She sets $Z_1 = i$ and c = i. Which statement is NOT true?
 - **A** Z_n flip-flops between (-1 + i)and (-i).
 - **B** The coefficient of *i* never reaches 2.
 - **C** The imaginary part becomes zero.

LESSON Problem Solving 5-9 Operations with Complex Numbers

Hannah and Aoki are designing fractals. Aoki recalls that many fractals are based on the Julia Set, whose formula is $Z_{n+1} = (Z_n)^2 + c$, where c is a constant. Hannah suggests they make their own fractal pattern using this formula, where c = 1and $Z_1 = 1 + 2i$.

1. Complete the table to show values of *n* and Z_n .

n	$\boldsymbol{Z}_{n+1} = (\boldsymbol{Z}_n)^2 + \boldsymbol{c}$	Z _n
1	$Z_1 = 1 + 2i$	$Z_1 = 1 + 2i$
2	$Z_2 = (1 + 2i)^2 + 1$	$Z_2 = -2 + 4i$
3	$Z_3 = (-2 + 4i)^2 + 1$	$Z_3 = -11 - 16i$
4	$Z_4 = \left(-11 - 16i \right)^2 + 1$	$Z_4 = -134 + 352i$

Choose the letter for the best answer.

- 2. Aoki creates a second pattern by changing the value of c to 3. What happens to Z_n as *n* increases?
 - **A** The real and imaginary parts become equal.
 - **B** The real part becomes zero.
 - (C) The imaginary part becomes zero.
- 4. Aoki takes Hannah's new formula.
 - leaves c = 1, and sets $Z_1 = \frac{1}{1+2i}$ What is the value of Z_3 ?

A
$$Z_3 = -11 - 16i$$

B $Z_3 = 2 + 2i$
C $Z_3 = 0.48 - 0.16i$

- 3. Hannah changes the formula to $Z_{n+1} = \frac{1}{(Z_n)^2} + c$. Leaving c = 1 and $Z_1 = 1 + 2i$, what is the value of Z_2 ? **A** 0.48 - 0.16*i* **B** 0.88 - 0.16*i* **C** 1.2 - 0.4*i*
- 5. Hannah reverts to $Z_{n+1} = (Z_n)^2 + c$. She sets $Z_1 = i$ and c = i. Which statement is NOT true?
 - **A** Z_n flip-flops between (-1 + i)and (-i).
 - **B** The coefficient of *i* never reaches 2.
 - **(C)**The imaginary part becomes zero.