Problem Solving 5-9 Operations with Complex Numbers

Hannah and Aoki are designing fractals. Aoki recalls that many fractals are based on the Julia Set, whose formula is $Z_{n+1} = (Z_n)^2 + c$, where *c* is a constant. Hannah suggests they make their own fractal pattern using this formula, where c = 1 and $Z_1 = 1 + 2i$.

1. Complete the table to show values of *n* and Z_n .

n	$Z_{n+1} = (Z_n)^2 + c$	Z _n
1	$Z_1 = 1 + 2i$	$Z_1 = 1 + 2i$
2	$Z_2 = (1 + 2i)^2 + 1$	<i>Z</i> ₂ =
3	$Z_3 = (___)^2 + 1$	Z ₃ =
4	$Z_4 = \left(\underline{\qquad} \right)^2 + 1$	<i>Z</i> ₄ =

2. Four points are shown on the complex plane. Which point is not part of the fractal pattern they have created? Explain.

Choose the letter for the best answer.

- **3.** Aoki creates a second pattern by changing the value of c to 3. What happens to Z_n as n increases?
 - A The imaginary part is always twice the real part.
 - **B** The real and imaginary parts become equal.
 - C The real part becomes zero.
 - **D** The imaginary part becomes zero.
- 5. Aoki takes Hannah's new formula,

leaves c = 1, and sets $Z_1 = \frac{1}{1 + 2i}$. What is the value of Z_3 ?

- **A** $Z_3 = -11 16i$
- **B** $Z_3 = 2 + 2i$
- **C** $Z_3 = 0.48 0.16i$
- **D** $Z_3 = 147.4 + i$

4. Hannah changes the formula to

$$Z_{n+1} = \frac{1}{(Z_n)^2} + c.$$
 Leaving $c = 1$ and $Z_1 = 1 + 2i$, what is the value of Z_2 ?

- **A** 0.48 0.16*i*
- **B** 0.88 0.16*i*
- **C** 1.2 0.4*i*
- **D** 2.2 0.4*i*
- **6.** Hannah reverts to $Z_{n+1} = (Z_n)^2 + c$. She sets $Z_1 = i$ and c = i. Which statement is NOT true?
 - **A** Z_n flip-flops between (-1 + i) and (-i).
 - **B** The coefficient of *i* never reaches 2.
 - C The imaginary part becomes zero.
 - **D** On a graph $Z_1 Z_3$ create a triangle.

LESSON Problem Solving 5-9 Operations with Complex Numbers

Hannah and Aoki are designing fractals. Aoki recalls that many fractals are based on the Julia Set, whose formula is $Z_{n+1} = (Z_n)^2 + c$, where *c* is a constant. Hannah suggests they make their own fractal pattern using this formula, where c = 1 and $Z_1 = 1 + 2i$.

1. Complete the table to show values of *n* and Z_n .

n	$Z_{n+1} = (Z_n)^2 + c$	Z _n	10 10 10 10 10 10 10 10 10 10 10 10 10 1
1	$Z_1 = 1 + 2i$	$Z_1 = 1 + 2i$	12
2	$Z_2 = (1 + 2i)^2 + 1$	$Z_2 = -2 + 4i$	
3	$Z_3 = (-2 + 4i)^2 + 1$	$Z_3 = -11 - 16i$	
4	$Z_4 = (-11 - 16i)^2 + 1$	$Z_4 = -134 + 352i$	

2. Four points are shown on the complex plane. Which point is not part of the fractal pattern they have created? Explain.

(-13, -35i); possible answer: this point cannot be generated using the given formula.

Choose the letter for the best answer.

- **3.** Aoki creates a second pattern by changing the value of *c* to 3. What happens to Z_n as *n* increases?
 - A The imaginary part is always twice the real part.
 - **B** The real and imaginary parts become equal.
 - C The real part becomes zero.
 - **D**The imaginary part becomes zero.
- 5. Aoki takes Hannah's new formula,

leaves c = 1, and sets $Z_1 = \frac{1}{1 + 2i}$ What is the value of Z_3 ?

(A) $Z_3 = -11 - 16i$ B $Z_3 = 2 + 2i$ C $Z_3 = 0.48 - 0.16i$ D $Z_3 = 147.4 + i$ 4. Hannah changes the formula to

$$Z_{n+1} = \frac{1}{(Z_n)^2} + c.$$
 Leaving $c = 1$ and
 $Z_1 = 1 + 2i$, what is the value of Z_2 ?
A 0.48 - 0.16*i*
(B)0.88 - 0.16*i*

Imaginary axis

- **C** 1.2 0.4*i*
- **D** 2.2 0.4*i*
- **6.** Hannah reverts to $Z_{n+1} = (Z_n)^2 + c$. She sets $Z_1 = i$ and c = i. Which statement is NOT true?
 - **A** Z_n flip-flops between (-1 + i) and (-i).
 - **B** The coefficient of *i* never reaches 2.
 - C The imaginary part becomes zero.
 - **D** On a graph $Z_1 Z_3$ create a triangle.