Name		Date	Class			
TEKS 2A.2.A	_					
LESSON Practice	s with Comple	y Numbers				
Graph each complex number	-	Imaginary axis				
1. -6		10 ¥				
2. 4 <i>i</i>		6				
3. 6 +7 <i>i</i>		4	<u>.</u>			
4. -8 - 5 <i>i</i>	-10 -8 -6	-4 -2 0 2 4 6 8	→ x 10 10			
5. –3 <i>i</i>		-2	СС			
Find each absolute value.		-6				
6. 4 + 2 <i>i</i>	7. 5 – <i>i</i>	_ ₁₀ ♥ 8.	-3 <i>i</i>			
Add or subtract. Write the res 9. $(-1 + 2i) + (6 - 9i)$			(-5+2i) + (-2+8i)			
Multiply. Write the result in the form $a + bi$.						
12. 3 <i>i</i> (2 – 3 <i>i</i>)	13. $(4 + 5i)(2 + i)$	<i>i</i>) 14.	(-1 + 6i)(3 - 2i)			
Simplify.						
15. $\frac{2+4i}{3i}$	16. $\frac{3+2i}{4+i}$	17.	2 <i>i</i> ¹¹			

Solve.

18. In electronics, the total resistance to the flow of electricity in a circuit is called the impedance, *Z*. Impedance is represented by a complex number. The total impedance in a series circuit is the sum of individual impedances. The impedance in one part of a circuit is $Z_1 = 3 + 4i$. In another part of a circuit, the impedance is $Z_1 = 5 - 2i$. What is the total impedance of the circuit?

Name	Da	te Clas	S			
TEKS 2A.2.A	_					
LESSON Practice		um h a v a				
Graph each complex number. Imaginary axis						
1. -6						
2. 4 <i>i</i>						
3. 6 +7 <i>i</i>						
4. -8 - 5 <i>i</i>		2 4 6 8 10 2 4 6 8 10 2 4 6 8 10				
5. -3 <i>i</i>						
0. 0/	-46-					
Find each absolute value.						
6. 4 + 2 <i>i</i>	7. 5 - <i>i</i>	8. -3 <i>i</i>				
$2\sqrt{5}$	$\sqrt{26}$		3			
	i					
Add or subtract. Write the result in the form $a + bi$.						
9. $(-1 + 2i) + (6 - 9i)$	10. $(3 - 3i) - (4 + 7i)$	11. $(-5 + 2i)$) + (-2 + 8i)			
5 — 7 <i>i</i>	-1 - 10 <i>i</i>		7 + 10 <i>i</i>			
Multiply. Write the result in the	e form <i>a</i> + <i>bi</i> .					
12. 3 <i>i</i> (2 – 3 <i>i</i>)	13. $(4 + 5i)(2 + i)$	14. (-1 + 6 <i>i</i>)(3 – 2 <i>i</i>)			
9 + 6 <i>i</i>	3 + 14 <i>i</i>	g) + 20 <i>i</i>			
Simplify.						
15. $\frac{2+4i}{3i}$	16. $\frac{3+2i}{4+i}$	17. 2 <i>i</i> ¹¹				
$\frac{4}{3} - \frac{2}{3}i$	$\frac{14}{17} + \frac{5}{17}i$		-2 <i>i</i>			
Solve.						
18. In electronics, the total resis	stance to the flow of electri	city in a circuit is call	ed			

18. In electronics, the total resistance to the flow of electricity in a circuit is called the impedance, *Z*. Impedance is represented by a complex number. The total impedance in a series circuit is the sum of individual impedances. The impedance in one part of a circuit is $Z_1 = 3 + 4i$. In another part of a circuit, the impedance is $Z_1 = 5 - 2i$. What is the total impedance of the circuit?

8 + 2*i*