Name	Date	Class

Challenge

5-9 Order of Operations with Complex Numbers

The real number system is a subset of the complex number system and both systems share many properties. However, there are properties of one system that may not apply in the other system.

Exercises 1-3 are performed in the set of real numbers.

- **1.** In the expression $\sqrt{a} \cdot \sqrt{b}$ there are square root operations and multiplication. Which operation should be done first according to the order of operations?
- **2.** Evaluate $\sqrt{3} \cdot \sqrt{12}$ and $\sqrt{3 \cdot 12}$.
- **3.** What do you notice about the two answers? Will this result always happen? What does that say about the order of operations?

For nonnegative real numbers a and b, $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$. Is the equation true when a and b are imaginary numbers?

Answer the following questions about complex numbers.

- **4.** Evaluate $\sqrt{-3} \cdot \sqrt{-12}$ and $\sqrt{(-3) \cdot (-12)}$.
- 5. What do you notice about your two answers? Is this the same as Exercise 3?
- 6. Write a general rule for the product of radicals when using complex numbers.

Evaluate and simplify.

7.
$$\sqrt{-8} \cdot \sqrt{-128}$$

8.
$$\sqrt{-3} \cdot \sqrt{-2} \cdot \sqrt{-6} \cdot \sqrt{-4}$$

9.
$$(\sqrt{-5})^2$$

10.
$$\sqrt{-2} \cdot \sqrt{-90} \cdot \sqrt{-5}$$

11.
$$\sqrt{-3} \cdot \sqrt{12}$$

12.
$$(\sqrt{-2})^5$$

SSON Reteach

5-9 Operations with Complex Numbers (continued)

To add or subtract complex numbers, add the real parts and then add the imaginary parts.

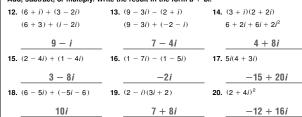
(4-i)-(-2+6i)Remember to distribute when subtracting. Then group to add the (4-i)+2-6ireal parts and the imaginary parts. (4+2)+(-i-6i)

Use

Rei

ne Distributive Property to rember that $i^2 = -1$.	nultiply complex numbers.
3i(2-i)	
$6i-3i^2$	Distribute.
6 <i>i</i> - 3(-1)	Use $i^2 = -1$.
3 + 6 <i>i</i>	Write in the form a + bi.
(4 + 2i)(5 - i)	
$20 + 10i - 4i - 2i^2$	Multiply.
20 + 6i - 2(-1)	Combine imaginary parts and use $i^2 = -1$.
22 + 6 <i>i</i>	Combine real parts.

Add, subtract, or multiply. Write the result in the form a + bi.



Copyright © by Holt, Rinehart and Winston. All rights reserved. 71 Holt Algebra 2

Challenge

5-9 Order of Operations with Complex Numbers

The real number system is a subset of the complex number system and both systems share many properties. However, there are properties of one system that may not apply in the other system.

Exercises 1-3 are performed in the set of real numbers.

1. In the expression $\sqrt{a} \cdot \sqrt{b}$ there are square root operations and multiplication. Which operation should be done first according to the order of operations?

Square roots should be simplified first. 6; 6

- **2.** Evaluate $\sqrt{3} \cdot \sqrt{12}$ and $\sqrt{3 \cdot 12}$.
- 3. What do you notice about the two answers? Will this result always happen? What does that say about the order of operations?

The answers are the same. Yes; this will always be true in the system of real numbers. The order of operations can be reversed in this case.

For nonnegative real numbers a and b, $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$. Is the equation true when a and b are imaginary numbers?

Answer the following questions about complex numbers.

4. Evaluate
$$\sqrt{-3} \cdot \sqrt{-12}$$
 and $\sqrt{(-3) \cdot (-12)}$. $\sqrt{3} i \cdot \sqrt{12} i = \sqrt{3} \cdot \sqrt{12} \cdot i^2 = \sqrt{36} i^2 = 6 \cdot -1 = -6; \sqrt{36} = 6$

- 5. What do you notice about your two answers? Is this the same as Exercise 3? The answers are different. The order of operations cannot be changed in this case.
- 6. Write a general rule for the product of radicals when using complex numbers. Possible answer: When multiplying radicals that have negative radicands, first simplify the radical using the imaginary number *i*, and then find the product.

Evaluate and simplify.

7. $\sqrt{-8} \cdot \sqrt{-128}$ **8.** $\sqrt{-3} \cdot \sqrt{-2} \cdot \sqrt{-6} \cdot \sqrt{-4}$ -3212 9. $(\sqrt{-5})^2$ **10.** $\sqrt{-2} \cdot \sqrt{-90} \cdot \sqrt{-5}$ -5-30i11. $\sqrt{-3} \cdot \sqrt{12}$ **12.** $(\sqrt{-2})^5$ 6*i* $4i\sqrt{2}$

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 2 72

Problem Solving

5-9 Operations with Complex Numbers

Hannah and Aoki are designing fractals. Aoki recalls that many fractals are based on the Julia Set, whose formula is $Z_{n+1}=\left(Z_{n}\right)^{2}+c$, where c is a constant. Hannah suggests they make their own fractal pattern using this formula, where c = 1 and $Z_1 = 1 + 2i$.

1. Complete the table to show values of n and Z_n .

_		
n	$Z_{n+1} = \left(Z_n\right)^2 + c$	Z _n
1	$Z_1 = 1 + 2i$	$Z_1 = 1 + 2i$
2	$Z_2 = (1 + 2i)^2 + 1$	$Z_2 = -2 + 4i$
3	$Z_3 = \left(\underline{-2 + 4i}\right)^2 + 1$	$Z_3 = -11 - 16i$
4	$Z_4 = \left(\frac{-11 - 16i}{1}\right)^2 + 1$	$Z_4 = -134 + 352i$

- 2. Four points are shown on the complex plane. Which point is not part of the fractal pattern they have created? Explain.
 - (-13, -35i); possible answer: this point cannot be generated using the given formula.

73

Choose the letter for the best answer.

- 3. Aoki creates a second pattern by changing the value of c to 3. What happens to Z_n as n increases?
 - A The imaginary part is always twice the real part.
 - B The real and imaginary parts become equal.
 - C The real part becomes zero.
 - D The imaginary part becomes zero.
- 5. Aoki takes Hannah's new formula, leaves c = 1, and sets $Z_1 = \frac{1}{1 + 2i}$ What is the value of Z_3 ?

B
$$Z_3 = 2 + 2i$$

C
$$Z_3 = 0.48 - 0.16i$$

D
$$Z_3 = 147.4 + i$$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

4. Hannah changes the formula to

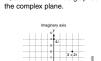
$$Z_{n+1} = \frac{1}{(Z_n)^2} + c$$
. Leaving $c = 1$ and $Z_1 = 1 + 2i$, what is the value of Z_2 ?

- **A** 0.48 0.16*i*
- **B**0.88 0.16i
- C 1.2 0.4i
- **D** 2.2 0.4*i*
- 6. Hannah reverts to
 - $Z_{n+1} = (Z_n)^2 + c$. She sets $Z_1 = i$ and c = i. Which statement is NOT true?
 - **A** Z_n flip-flops between (-1 + i)and (-i).
 - ${f B}$ The coefficient of i never reaches 2.
 - C The imaginary part becomes zero.
 - ${\bf D}$ On a graph Z_1-Z_3 create a triangle.

Reading Strategy 5-9 Use a Model

Complex numbers can be graphed on a complex plane. Use the coordinate plane as a model. In a complex plane, the horizontal axis represents real numbers, and the vertical axis represents imaginary

The ordered pairs of numbers (0, -2), (-3, -1), (0, 4),and (3, 2) can be graphed on the coordinate grid.



The complex numbers -2i, -3-i,

4i, and 3 + 2i can be graphed on

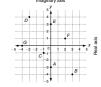
Answer each question.

1. Identify the location of each point on the complex plane below.

a. A	-3 <i>i</i>
b. B	3 - 4i
c. C	−1 − <i>i</i>
d. D	-3 + 4i
	3;

2 + i

-4



2. Describe the location of the complex number $5+\sqrt{-4}$ in the complex plane.

$$5 + \sqrt{-4} = 5 + 2i$$
; located 5 units to the right and two units up

- 3. How far from the origin is -1 + i? Explain how you know. $\sqrt{2}$; the point (-1+i) is one vertex of a right triangle with vertices at the origin and (-1+0i). Each leg of the triangle equals 1. Using the Pythagorean Theorem, $1^2+1^2=c^2$, $c^2=2$, $c=\sqrt{2}$.
- 4. Explain why the complex numbers 2+3i and 2-3i are the same distance from the origin. The real value is the same for both, and 3i and -3i are the same distance from the real number axis. So the distances to the origin are corresponding sides on congruent triangles.

Copyright © by Holt, Rinehart and Winston. All rights reserved. Holt Algebra 2

Holt Algebra 2