EXPLORATION

5-9 Operations with Complex Numbers

Recall that $i = \sqrt{-1}$ and that $i^2 = -1$. You can use these facts to simplify other powers of *i*. For example, $i^3 = i^2 \cdot i = -1 \cdot i = -i$.

1. Complete the table by simplifying the powers of *i*.

$i^1 =$	$i^2 =$	i ³ =	$i^{4} =$
$i^{5} =$	i ⁶ =	$i^7 =$	j ⁸ =
i ⁹ =	$i^{10} =$	i ¹¹ =	i ¹² =
i ¹³ =	$i^{14} =$	i ¹⁵ =	i ¹⁶ =

2. What values are possible for the positive integer powers of *i*?

THINK AND DISCUSS

- **3. Discuss** the pattern you notice in the table.
- **4.** Explain how you can quickly find the value of i^{64} .

EXPLORATION

5-9 Operations with Complex Numbers

Recall that $i = \sqrt{-1}$ and that $i^2 = -1$. You can use these facts to simplify other powers of *i*. For example, $i^3 = i^2 \cdot i = -1 \cdot i = -i$.

1. Complete the table by simplifying the powers of *i*.

j ¹ = i	$i^2 = -1$	i ³ = −i	$i^4 = 1$
i ⁵ = i	$i^{6} = -1$	i ⁷ = - i	i ⁸ = 1
i ⁹ = i	$i^{10} = -1$	$i^{11} = -i$	i ¹² = 1
i ¹³ = i	$i^{14} = -1$	i ¹⁵ = - i	i ¹⁶ = 1

2. What values are possible for the positive integer powers of *i*?

THINK AND DISCUSS

- **3. Discuss** the pattern you notice in the table.
- **4.** Explain how you can quickly find the value of i^{64} .
- **2**. *i*, −1, −*i*, 1
- 3. As the exponents increase starting with 1, the values of the positive integer powers of i are i, -1, -i, and 1 in a repeating pattern.
- 4. If the exponent is a positive integer that is a multiple of 4, then the value of *i* raised to that exponent is 1. Because 64 is a positive integer multiple of 4, $i^{64} = 1$.