5-9 Operations with Complex Numbers

Example 1 Graphing Complex Numbers

Graph each complex number.

A. 2-3i B. -1+4i C. 4+i D. -i

Example 2 Determining the Absolute Value of Complex Numbers

Find each absolute value.

A. 3 + 5 <i>i</i>	B. -13	C. -7 <i>i</i>
$\sqrt{3^2 + 5^2}$	-13 + 0 <i>i</i>	0 + (-7)i
$\sqrt{9+25}$	$\sqrt{(-13)^2 + 0^2}$	$\sqrt{0^2 + (-7)^2}$
$\sqrt{34}$	$\sqrt{169}$	√ 49
	13	7

Example 3 Adding and Subtracting Complex Numbers

Add or subtract. Write the result in the form a + bi.

A.
$$(4 + 2i) + (-6 - 7i)$$

 $(4 - 6) + (2i - 7i)$ Add real parts and imaginary parts.
 $-2 - 5i$
B. $(5 - 2i) - (-2 - 3i)$
 $(5 - 2i) + 2 + 3i$ Distribute.
 $(5 + 2) + (-2i + 3i)$ Add real parts and imaginary parts.
 $7 + i$
C. $(1 - 3i) + (-1 + 3i)$
 $(1 - 3i) - 1 + 3i$ Distribute.
 $(1 - 1) + (-3i + 3i)$ Add real parts and imaginary parts.
 0

Example 4 Adding Complex Numbers on the Complex Plane

- Find (3 i) + (2 + 3i) by graphing on the complex plane.
- **Step 1** Graph 3 i and 2 + 3i on the complex plane. Connect each of these numbers to the origin with a line segment.
- **Step 2** Draw a parallelogram that has these two line segments as sides. The vertex that is opposite the origin represents the sum of the two complex numbers, 5 + 2i. Therefore (3 - i) + (2 + 3i) = 5 + 2i.

Check Add by combining the real parts and combining the imaginary parts.

(3 - i) + (2 + 3i) = (3 + 2) + (-i + 3i) = 5 + 2i

5-9 Operations with Complex Numbers

Example 5 Multiplying Complex Numbers

Multiply. Write the result in the form a + bi.

A.
$$-2i(2 - 4i)$$

 $-4i + 8i^2$
 $-4i + 8(-1)$
 $-8 - 4i$

- **B.** (3 + 6i)(4 i) $12 + 24i - 3i - 6i^2$ 12 + 21i - 6(-1)18 + 21i
- C. (2 + 9i)(2 9i) $4 + 18i - 18i - 81i^{2}$ 4 - 81(-1)85
- D. (−5*i*)(6*i*) −30*i*² −30(−1) 30

- Distribute. Use $i^2 = -1$. Write in a + bi form.
- Multiply. Use $i^2 = -1$. Write in a + bi form.

Multiply. Use $i^2 = -1$. Write in a + bi form.

Multiply. Use $i^2 = -1$. Write in a + bi form.

5-9 Operations with Complex Numbers

Example 6 Evaluating Powers of *i*

Simplify.

Α.	-6 <i>i</i> ¹⁴	
	$-6(i^2)^7 = -6(-1)^7$	<i>Rewrite</i> i ¹⁴ as a power of i ² .
	= -6(-1) = 6	Simplify.
В.	i ⁶³	
	$i g i^{62} = i g (i^2)^{31}$	Rewrite as a product of i and an even power of i.
	$= i g(-1)^{31}$	<i>Rewrite</i> i ⁶² as a power of i ² .
	= i g(-1)	Simplify.

= -i

Example 7 Dividing Complex Numbers

Simplify.

A. <u>3 + 10<i>i</i></u> 5 <i>i</i>	В	$\frac{2+8i}{4-2i}$
$\frac{3+10i}{5i}\left(\frac{-5i}{-5i}\right)$	Multiply by the conjugate.	$\frac{2+8i}{4-2i}\left(\frac{4+2i}{4+2i}\right)$
$\frac{-15i-50i^2}{-25i^2}$	Distribute.	$\frac{8+4i+32i+16i^2}{16-4i^2}$
$\frac{-15i + 50}{25}$	<i>Use</i> $i^2 = -1$.	$\frac{-8 + 36i}{20}$
$\frac{-3i+10}{5} = 2 - $	$\frac{3}{5}i$ Simplify.	$\frac{-2+9i}{5} = -\frac{2}{5} + \frac{9}{5}i$