-3 -2

LESSON 5-7 Solving Quadratic Inequalities

Graphing quadratic inequalities is similar to graphing linear inequalities.

Graph $y \le -x^2 + 2x + 3$.

Reteach

- **Step 1** Draw the graph of $y = -x^2 + 2x + 3$.
 - a = -1, so the parabola opens downward.
 - vertex at (1, 4) $-\frac{b}{2a} = -\frac{2}{2(-1)} = 1$, and f(1) = 4
 - y-intercept is 3, so the curve also passes through (2, 3)

Draw a solid boundary line for \leq or \geq .

(Draw a dashed boundary line for <or >.)

- Shade below the boundary of the parabola Step 2 for < or \leq . (Shade above the boundary for > or \geq .)
- Step 3 Check using a test point in the shaded region. Use (0, 0).

$$y \le -x^2 + 2x + 3$$

?: $0 \le -(0)^2 + 2(0) + 3$
 \checkmark : $0 \le 3$

Graph each inequality.

1. $y \ge x^2 - 4x + 3$

Vertex:

y-intercept:

Boundary: ____

Test point: (1, 1)

Holt Algebra 2

Boundary:

Test point: (-1, 0)

54

2. $y < -x^2 - 4x - 1$

Vertex: _____

y-intercept: _____

LESSON Reteach **5-7** Solving Quadratic Inequalities (continued) You can use algebra to solve quadratic inequalities. Solve the inequality $x^2 - 2x - 5 \le 3$. **Step 1** Write the related equation. $x^2 - 2x - 5 = 3$ **Step 2** Solve the equation. $x^2 - 2x - 8 = 0$ Write the equation in standard form. Then factor to solve for x. (x-4)(x+2) = 0(x - 4) = 0 or (x + 2) = 0These solutions are called critical values. **Step 3** Use the critical values to write three intervals. Intervals: $x \le -2, -2 \le x \le 4, x \ge 4$ **Step 4** Using the inequality, test a value for *x* in each interval. $x^2 - 2x - 5 \le 3$ $x \le -2$: Try -3. $(-3)^2 - 2(-3) - 5 \le 3$? $10 \leq 3$ False. $-2 \le x \le 4$: Try 0. $(0)^2 - 2(0) - 5 \le 3$? $-5 \leq 3$ True. Try 5. $(5)^2 - 2(5) - 5 \le 3?$ $x \ge 4$: Use closed circles when the $10 \leq 3$ False. inequality is \leq or \geq . Step 5 Shade the solution on a number line. Use open circles when the inequality is < or >. -5 -4 -3 -2 -1 0 1 2 3 5 4

Solve each inequality. Graph the solution on the number line.

3. $x^2 - 2x + 1 \ge 4$	4. $x^2 + x + 4 < 6$
Solve: $x^2 - 2x - ___ = ___$.	Solve:
Critical values:	Critical values:
Test <i>x</i> -values:	Test <i>x</i> -values:
→ → → → → → → → → → → → → → → → →	→ → → → → → → → → → → → → → → → →

Reteach		
5- Solving Quadratic Inequalities (continued)	Areas Defined by Inequalities	
You can use algebra to solve quadratic inequalities.	by the formula $A = \frac{2}{2}bh$, where b is the length of the line segment and h is	
Solve the inequality $x^2 - 2x - 5 \le 3$.	the vertical distance from the vertex of the parabola to the line segment.	
Step 1 Write the related equation. $x^2 - 2x - 5 = 3$	Consider the region bounded by the curves	
Step 2 Solve the equation. $y^2 = 2y = 8 = 0$	$y = 5 - x^2$ and $y = x^2 - 3$. This region is shown	
(x - 4)(x + 2) = 0 Write the equation in standard form. Then factor to solve for x.		
(x - 4) = 0 or $(x + 2) = 0$	To find the area of the region bounded by the curves, you need to know the length of the begin and A	
x = 4 or $x = -2$ These solutions are called	segment AB. -5 - 4 - 3 - 2 - 1 0 1/2 3 4 5	
Step 3 Use the critical values to write three intervals.		
Intervals: $x \le -2, -2 \le x \le 4, x \ge 4$	1. Adapt the substitution method for systems of linear equations to find the coordinates of the intersection	
Step 4 Using the inequality, test a value for x in each interval.	points of the parabolas. What are the coordinates of A and B?	
$x^2 - 2x - 5 \le 3$	(-2, 1), (2, 1)	
$x \le -2$: Try $-3. (-3)^2 - 2(-3) - 5 \le 3$?	2. What is the length of line segment AB? 4 units	
$10 \le 3$ False.		
$-2 \le x \le 4$: Try 0. $(0)^2 - 2(0) - 5 \le 3$?	3. Find the area enclosed by each parabola and line segment AB. Use this data to find the	
$-5 \le 3$ True.		
$x \ge 4$: Iry 5. $(5)^2 - 2(5) - 5 \le 3$?	The area enclosed between the segment and each parabola is $\frac{62}{3}$ square	
Step 5 Shade the solution on a number line $s \leq s = 1$ inequality is $s \leq s > 2$.	units so the area bounded by both parabolas is $\frac{34}{3}$ square units.	
Use open circles when the	$y \ge x^2 - 5$	
-5 -4 -3 -2 -1 0 1 2 3 4 5	For Exercises 4–6 use this system of inequalities: $y \le 2x^2 - 4$	
Solve each inequality. Graph the solution on the number line.	4. Graph the system of inequalities and shade ↓ y ≤ 4 y ↓ ↓ ↓ ↓	
3. $x^2 - 2x + 1 \ge 4$ 4. $x^2 + x + 4 < 6$	the intersection of the three regions.	
$x^2 + x - 2 = 0$	5. Identify the points of intersection of the parabolas and the line $y = 4$.	
Solve: $x^2 - 2x - \underline{0} = \underline{0}$. Solve: $\underline{x + x} = \underline{0}$	(-3, 4), (-2, 4), (2, 4), (3, 4)	
Critical values: Critical values:2, 1	6 Find the area enclosed by the three $-5 - 4 - 3 - 2 + 1 = 0$ $1/2$ $3 + 5$	
Test x-values: -2, 0, 4 Test x-values: -3, 0, 2	inequalities.	
	area 108 64 44	
$x \le -1 \text{ or } x \ge 3$ $-2 < x < 1$	Area = $\frac{1}{3} - \frac{1}{3} = \frac{1}{3}$	
<pre></pre>		
Copyright © by Holt, Rinehart and Winston. 55 Holt Algebra 2	Copyright & by Holt, Rinehart and Winston. 56 Holt Algebra 2 All rights reserved.	
Broblem Solving	Peading Strategy	
Itessor Problem Solving 5-7 Solving Quadratic Inequalities	Reading Strategy	
Utsson Problem Solving 5-7 Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia	LESSON Reading Strategy 57 Analyze Information	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Brox ynergons is $P(y) = -28x^2 + 1400x = -398x^2$	LESSON Reading Strategy DT Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is	Reading Strategy Fraction You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit <i>P</i> for <i>x</i> persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000.	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the $-28x^2 + 1400x - 3496 \ge$	Reading Strategy Grading Strategy Grading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. Analyze Information	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$	Reading Strategy Strategy Strategy You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Itesson Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical weak $x = 13.04, 36.96$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. Image: the solution of the plane inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Itesson Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Lisson Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval. $x > 10,000$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Lisson Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval. $\frac{10}{-28(10)^2 + 1400(10) - 3496}$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ 10 $-28(10)^2 + 1400(10) - 3496$ 30 $13,304$ yes	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. Analyze Information	
Problem Solving Itessen Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\frac{x - value}{2x^2 + 1400(x) - 3496} = 10,000?$ 10 $-28(10)^2 + 1400(10) - 3496$ 100 30 $13,304$ yes 40 7704 100	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities:	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ $10 - 28(10)^2 + 1400(10) - 3496 = 100 = 30 = 13,304 = yes = 40 = 7704 = 100$ d. How many people will Travel Tours need to make	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ $\frac{10}{30} - 28(10)^2 + 1400(10) - 3496 - 100}{30}$ $10,304 - 28(10)^2 + 1400(10) - 3496 - 100}{10}$ d. How many people will Travel Tours need to make the tour possible? From 14 to 36 people	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$ $y < x^2 + 1$ $y < x^2 + 1$	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ waves. $x = 13.04, 36.96$ c. Test an x-value in each interval. $x = 13.04, 36.96$ do 13.304 yes $10, 000^2$ do 7704 no 10 d. How many people will Travel Tours need to make the tour possible? From 14 to 36 people 2. A year later, the owner of Travel Tours decides that the dust of all locat Prostand tour will be a to make a profit of all locat	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\frac{x - value}{10, -28(10)^2 + 1400(10) - 3496} \frac{10}{10}}{30, 13,304, yes}$ d. How many people will Travel Tours need to make the tour possible? 2. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$ $y < x^2 + 1$ $x < x^2 +$	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ c. Test an x-value in each interval. $x = 13.04, 36.96$ d. How many people will Travel Tours need to make the tour possible? no d. How many people will Travel Tours need to make the tour possible? From 14 to 36 people 2. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour?	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y}{y} = \frac{y^2}{4} + \frac{1}{2} + $	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $x = 13.04, 36.96$ watures. c. Test an x-value in each interval. $\overline{x - 28(10)^2 + 1400(10) - 3498}$ 100 30 $13,304$ yes 40 7704 100 32 A year later, the owner of Travel Tours need to make the tour possible? 2. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 nenale to take the tour	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{1}{y + y} = \frac{x^2}{y} + \frac{1}{y} = \frac{1}$	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\frac{x - value}{10, -28(10)^2 + 1400(10) - 3496} \frac{n_0}{10}}{30, 13,304, yes}$ d. How many people will Travel Tours need to make the tour possible? c. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible? 2. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fiii Islands and determines that the	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$ $y < x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ and $y \le x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\overline{x - value} \overline{x - value in each interval}. x = 13.04, 36.96 d. How many people will Travel Tours need to make the tour possible? d. How many people will Travel Tours need to make the tour possible? d. How many people will Travel Tours need to make the tour possible? d. How many people will Travel Tours need to make the tour possible? A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least $12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fiji Islands and determines that the profit P for x persons is P(x) = -40x^2 + 1920$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$ $y < x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point because the parabota is the boundary with the inequality because that point	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\overline{x - value} \overline{x - value} \overline{x - 13,04, 36.96}$ d. How many people will Travel Tours need to make the tour possible? d. How many people will Travel Tours need to make the tour possible? d. How many people will Travel Tours need to make the tour possible? A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fiji Islands and determines that the profit P for x persons is $P(x) = -40x^2 + 1920x - 3200$. Choose the letter for the best answer.	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y > x^2 + 1$ $y < x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ 1. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\frac{x value}{x value} \frac{valuate}{x value} \frac{P \ge 10,000?}{10 - 28(10)^2 + 1400(10) - 3496 \frac{n_0}{10}}$ d. How many people will Travel Tours need to make the tour possible? From 14 to 36 people 2. A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fiji Islands and determines that the profit P for x persons is $P(x) = -40x^2 + 1920x - 3200$. Choose the letter for the best answer. 3. In order to make \$10,000 profit, how many people will take for this tour to the Fiji Islands and determines that the profit on the Fiji Islands and tetermines that the profit prongene will take for this tour to mak	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ $y \le x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by $y > x^2 + 1$.	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $-28x^2 + 1400x - 3496 \ge 10,000$ c. Test an x-value in each interval. $\overline{x - value}$ $\overline{valuate}$ $P \ge 10,000^2$ 10 $-28(10)^2 + 1400(10) - 3496$ $n0$ 30 $13,304$ yes 40 7704 $n0$ 30 $13,304$ yes 40 7704 $n0$ Sible? A year later, the owner of Travel Tours need to make the tour possible? A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. <td colsp<="" td=""><td>Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \ge x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by $y > x^2 + 1$. The region inside the curve not including the boundary line</td></td>	<td>Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \ge x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by $y > x^2 + 1$. The region inside the curve not including the boundary line</td>	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ $y \ge x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1$; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by $y > x^2 + 1$. The region inside the curve not including the boundary line
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval. $\frac{x value}{10 - 28(10)^2 + 1400(10) - 3496} \frac{100}{100}}{30 - 13,304 \frac{yes}{100}}$ d. How many people will Travel Tours need to make the tour possible? c. Test an x-value in each interval. From 14 to 36 people 2 d. How many people will Travel Tours need to make the tour possible? Com 14 to 36 people 2 A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fijii Island	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - y^2 + 1} $ The graph can show four different inequalities: $y \ge x^2 + 1$ $y \le x^2 + 1$ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $y \ge x^2 + 1$ and $y \le x^2 + 1$ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $y < x^2 + 1; (0, 1)$ is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by $y > x^2 + 1$. The region inside the curve not including the boundary line 4. The points (2, 10) and (3, 10) are in the solution region of which inequality? Which inequality?	
Problem Solving Solving Quadratic Inequalities The manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000. 1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval. $\overline{x - value} \overline{valuate} P \ge 10,000?$ 10 $10, -28(10)^2 + 1400(10) - 3496$ 30 $13,304$ yes 40 7704 no d. How many people will Travel Tours need to make the tour possible? A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour? Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour. The manager plans a tour to the Fiji Islands and determines that the profit P for x persons is $P(x) = -40x^2 + 1920x - 3200$. Choose the letter for the best answer. 3. In order to make \$10,000 profit, how many people will it take for this tour to happen?	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - y^2 + 1} $ The graph can show four different inequalities: $ y = x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 $ Analyze the graph using the inequalities shown above. 1. Which inequality describes just the point of the is solution? $ \frac{y \ge x^2 + 1}{y < x^2 + 1} $ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $ y < x^2 + 1; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by y > x^2 + 1.The region inside the curve not including the boundary line4. The points (2, 10) and (3, 10) are in the solution region of which inequality?Write another solution of this inequality. w < x^2 + 1 : mercipinal canouser: (4, 20) $	
Problem SolvingSolving Quadratic InequalitiesThe manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000.1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval. $x-value \overline{valuate value 1000} + 28(10)^2 + 1400(10) - 3496 no30 - 13,304 yesd. How many people will Travel Tours need to makethe tour possible?A year later, the owner of Travel Tours need to makethe tour possible?A year later, the owner of Travel Tours decides that theAustralia/New Zealand tour will have to make a profit of at least$12,000 for the tour to be possible. What effect will this have on therange of people able to take this tour?Possible answer: The range is narrower. There must be between 17 and 33people to take the tour.The manager plans a tour to the Hiji Islands and determines that theprofit P for x persons is P(x) = -40x^2 + 1920x - 3200. Choose theletter for the best answer.A in order to make $10,000 profit, howmany people will it take for this tour tohappen?(A) Between 9 and 39 peopleB Between 14 and 36 peopleC At least 22 peopleC At least 22 people$	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - y^2 + 1} $ The graph can show four different inequalities: $ y = x^2 + 1 \\ y < x^2 + 1 $ Analyze the graph using the inequalities shown above. 1. Which inequality describes just the point of this inequality? Explain why or why not. $ y = x^2 + 1; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by y > x^2 + 1.The region inside the curve not including the boundary line4. The points (2, 10) and (3, 10) are in the solution region of which inequality?Write another solution of this inequality. y \ge x^2 + 1; (0, 2, 1) = x^2 + 1; (0, 2, 1) = x^2 + 1. The region inside the curve not including the boundary line4. The points (2, 10) and (3, 10) are in the solution region of which inequality?Write another solution of this inequality. y \ge x^2 + 1; possible answer: (4, 20) $	
Problem SolvingSolving Quadratic InequalitiesThe manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit P for x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is less than \$10,000.1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ c. Test an x-value in each interval.X-valueYealuateYeal 100(10) - 349610000230013.04, 36.96c. Test an x-value in each interval.X-valueEvaluateP ≥ 10,000?3013.04, 36.96c. Test an x-value in each interval.X-valueEvaluateP ≥ 10,000?103013.04, 36.96c. Test an x-value in each interval.X-valueEvaluateP ≥ 10,000?10102A year later, the owner of Travel Tours need to make the tour possible?A year later, the owner of Tavel Tours decides that the Australia	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - y^2 + 1} $ The graph can show four different inequalities: $ y \ge x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 \\ y \le x^2 + 1 $ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $ y \ge x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 $ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $ y < x^2 + 1; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by y > x^2 + 1.The region inside the curve not including the boundary line4. The points (2, 10) and (3, 10) are in the solution region of which inequality?Write another solution of this inequality. y \ge x^2 + 1; possible answer: (4, 20) 5. How would you change the graph to show that the boundary line is notincluded in the solution region?$	
Problem SolvingSolving Quadratic InequalitiesThe manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Pfor x persons is $P(x) = -28x^2 + 1400x - 3496$. The owner of Travel Tours has decided that the tour will be canceled if the profit is tess than \$10,000.1a. Write an inequality that you could use to find tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ 2b. Solve the related equation to find the critical values. $x = 13.04, 36.96$ 2c. Test an x-value in each interval. $x = 13.04, 36.96$ The manager plans a tour to the Australia/New Zealand tour will have to make a profit of at least \$12,000Size and tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour?Possible answer: The range is narrower. There must be between 17 and 33 people to take the tour.A in order to make \$10,000 profit, how many people will it take for this tour to happen?A Between 9 and 39 peopleA least 30 peopleA tleast 32 peopleA tleast 32 peopleA tleast 32 peopleD At least 33 peopleA least 30 people	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - y^2 + 1} $ The graph can show four different inequalities: $ y \ge x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 $ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $ y \ge x^2 + 1 \\ y < x^2 + 1 \\ y < x^2 + 1 $ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $ y < x^2 + 1; (0, 1) is not a solution of this inequality because that point lies on the boundary line, which is not part of the solution. 3. Describe the region represented by y > x^2 + 1.The region inside the curve not including the boundary line.4. The points (2, 10) and (3, 10) are in the solution region of which inequality?Write another solution of this inequality. \frac{y \ge x^2 + 1; possible answer: (4, 20)}{y \ge x^2 + 1; possible answer: (4, 20)} 5. How would you change the graph to show that the boundary line is not include in the solution region?Change the solid boundary line to a dashed line$	
Problem SolvingSolving Quadratic InequalitiesSolving Quadratic InequalitiesA colving Quadratic Inequalities- 28x ² + 1400x - 3496 >= 10,000x = 13.04, 36.96(A colving Quadratic Interval:- 28x ² + 1400x - 3496 >= 10,000x = 13.04, 36.96x = 13.04, 36.96<	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2}{y^2 + 1} = \frac{y^2}{y^2 + 1} = \frac{y^2 + 1}{y^2 + x^2 + 1} = \frac{y^2 + 1}{y^2 + 1$	
Problem SolvingSolving Quadratic InequalitiesSolving Quadratic InequalitiesThe manager at Travel Tours is proposing a fall tour to Australia and New Zealand. He works out the details and finds that the profit Por x persons is $P(x) = -28x^2 + 1400x - 3496$ in the number of people needed to make the tour possible.1. a. Write an inequality that you could use to find the number of people needed to make the tour possible. $-28x^2 + 1400x - 3496 \ge 10,000$ 2. Solve the related equation to find the critical values. $x = 13.04, 36.96$ Term 14 to 36 peopleThe womer of Travel Tours need to make the tour possible?A ware tater, the owner of Travel Tours need to make the tour possible?A year later, the owner of Travel Tours decides that the Australia/New Zealand tour will have to make a profit of at least \$12,000 for the tour to be possible. What effect will this have on the range of people able to take this tour?The manager plans a tour to the Fiji Islands and determines that the profit P for x persons is $P(x) = -40x^2 + 1920x - 3200$. Choose the letter for the best answer.A Between 14 and 36 peopleA between 14 and 36 peopleA Between 14 and 36 peopleA letter stat 30 peopleDestruct to the possible. What effect will this have on the range of people able of this tour?Destible answer: The range is narrower. There must be between 17 and 33 people to take the tour.Destible answer: The range is narrower. There must be between 17 and 33 people to t	Reading Strategy Analyze Information You can graph quadratic inequalities just as you can graph linear inequalities. The solution of a quadratic inequality is a region in the plane. The graph of $y = x^2 + 1$ is shown below. Its curve describes the boundary between two regions. $ \frac{y^2 + y^2 + 1}{y - x^2 + 1} $ The graph can show four different inequalities: $ y \ge x^2 + 1 \\ y \le x^2 + 1 \\ y \le x^2 + 1 \\ y \le x^2 + 1 $ Analyze the graph using the inequalities shown above. 1. Which inequalities include the boundary as part of their solution? $ \frac{y \ge x^2 + 1 \text{ and } y \le x^2 + 1 \\ y \le x^2 + 1 $ 2. Which inequality describes just the region outside the parabola? Is (0, 1) a solution of this inequality? Explain why or why not. $ y < x^2 + 1; (0, 1) \text{ is not a solution of this inequality? Explain why or the solution.} $ 3. Describe the region represented by $y > x^2 + 1$. The region inside the curve not including the boundary line 4. The points (2, 10) and (3, 10) are in the solution region of which inequality? Write another solution of this inequality. $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How would you change the graph to show that the boundary line is not included in the solution region? $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How would you change the graph to show that the boundary line is not include in the solution region? $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How would you change the graph to show that the boundary line is not include in the solution region? $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How would you change the graph to show that the boundary line is not include in the solution region? $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How mould you change the graph to show that the boundary line is not include in the solution region? $ \frac{y \ge x^2 + 1; \text{ possible answer: (4, 20)} $ 5. How mould you change the graph to show that the boundary line is not included in the solution region? $ y \ge x^2 + 1; \text{ possible answer: (4, 20$	