

ESSON Practice A 5-7 *Solving Quadratic Inequalities*

Graph each inequality and shade the solution region. Use a test point to verify the solution region.

- **1.** $y < x^2 2x + 3$
 - a. y-intercept is 3.
 - **b.** Vertex is (1, 2).

Solve each inequality by using algebra.

- **3.** $x^2 + x 8 \le -6$
 - **a.** Write the related equation.
 - **b.** Solve for *x* to find the critical values.
 - **c.** Test an *x*-value in each interval, then write the solution.

Three intervals, $x \le -2, -2 \le x \le 1, x \ge 1$ Try $x = -3, (-3)^2 + (-3) - 8 \le -6$

- 9 3 8 = -2, not less than -6
- Try x = 0, $(0)^2 + (0) 8 \le -6$
- $0 + 0 8 \le -6$ is true
- Try $x = 2(2)^2 + (2) 8 \le -6$
- 4 + 2 8 = -2, not less than -6

4. $x^2 + 10x + 25 > 9$

- **2.** $y \ge -x^2 + 4x 5$
 - a. y-intercept is _____

c. Test point _____

5.
$$x^2 - x < 12$$

 $\operatorname{Copyright} \circledcirc$ by Holt, Rinehart and Winston. All rights reserved.

Date Class _

INALLE

LESSON **Practice A** 5-7 Solving Quadratic Inequalities

Graph each inequality and shade the solution region. Use a test point to verify the solution region.

- **1.** $y < x^2 2x + 3$
 - a. y-intercept is 3.
 - **b.** Vertex is (1, 2).

Solve each inequality by using algebra.

3.
$$x^2 + x - 8 \le -6$$

- **a.** Write the related equation.
- **b.** Solve for *x* to find the critical values.
- **c.** Test an *x*-value in each interval, then write the solution.

Three intervals, $x \le -2$, $-2 \le x \le 1$, $x \ge 1$ Try x = -3, $(-3)^2 + (-3) - 8 \le -6$ 9 - 3 - 8 = -2, not less than -6Try x = 0, $(0)^2 + (0) - 8 \le -6$ $0 + 0 - 8 \le -6$ is true Try x = 2 $(2)^2 + (2) - 8 \le -6$ 4 + 2 - 8 = -2, not less than -64. $x^2 + 10x + 25 > 9$ 5

x < -8 or x > -2

5. $x^2 - x < 12$ -3 < x < 4