5-7 Solving Quadratic Inequalities

Example 1 Graphing Quadratic Inequalities in Two Variables

Graph $y \ge x^2 - 7x + 10$.

- **Step 1** Graph the boundary of the related parabola $y = x^2 7x + 10$ with a solid curve. Its *y*-intercept is 10, its vertex is (3.5, -2.25), and its *x*-intercepts are 2 and 5.
- Step 2 Shade above the parabola because the solution consists of *y*-values greater than those on the parabola for corresponding *x*-values.

Check Use a test point to verify the solution region.

$$y \ge x^{2} - 7x + 10$$

$$0 \ge (4)^{2} - 7(4) + 10$$

$$0 \ge 16 - 28 + 10$$

$$0 \ge -2 \checkmark$$

5-7 Solving Quadratic Inequalities

Example 2 Solving Quadratic Inequalities by using tables and graphs

Solve each inequality by using tables and graphs.

A. $x^2 + 8x + 20 \ge 5$

Use a graphing calculator to graph each side of the inequality. Set **Y1** equal to $x^2 + 8x + 20$ and **Y2** equal to 5. Identify the values of *x* for which **Y1** \ge **Y2**.

X	Y1	Y2
je,	8	5
-5	5	5
-3	Ś	5
-2	8	5
0	20	5
X= -4		

The parabola is at or above the line when *x* is less than or equal to -5 or greater than or equal to -3. So, the solution set is $x \le -5$ or $x \ge -3$ or $(-\infty, -5) \cup (-3, \infty)$. The table supports your answer.

The number line shows the solution set.

Example 2 Solving Quadratic Inequalities by using tables and graphs (continued)

B. $x^2 + 8x + 20 < 5$

Use a graphing calculator to graph each side of the inequality. Set **Y1** equal to $x^2 + 8x + 20$ and **Y2** equal to 5. Identify the values of *x* for which **Y1** < **Y2**.

The parabola is below the line when x is between -5 and -3. So, the solution set is -5 < x < -3 or (-5, -3). The table supports your answer.

The number line shows the solution set.

5-7 Solving Quadratic Inequalities

Example 3 Solving Quadratic Inequalities by Using Algebra

Solve the inequality $x^2 - 10x + 18 \le -3$ by using algebra.

Step 1 Write the related equation. $x^2 - 10x + 18 = -3$

Step 2 Solve the equation for *x* to find the critical values.

$x^2 - 10x + 21 = 0$	Write in standard form.
(x-3)(x-7) = 0	Factor.
x - 3 = 0 or $x - 7 = 0$	Zero Product Property
<i>x</i> = 3 or <i>x</i> = 7	Solve for x.

The critical values are 3 and 7. The critical values divide the number line into three intervals: x < 3, 3 < x < 7, x > 7.

Step 3 Test an *x*-value in each interval.

Shade the solution regions on the number line. Use solid circles for the critical values because the inequality contains them. The solution is $3 \le x \le 7$ or (3, 7)

5-7 Solving Quadratic Inequalities

Example 4 Problem-Solving Application

The monthly profit *P* of a small business that sells bicycle helmets can be modeled by the function $P(x) = -8x^2 + 600x - 4200$, where *x* is the average selling price of a helmet. What range of selling prices will generate a monthly profit of at least \$6000?

1. Understand the Problem

The answer will be the average price of a helmet required for a profit that is greater than or equal to \$6000.

List the important information:

- The profit must be at least \$6000.
- The function for the business's profit is $P(x) = -8x^2 + 600x 4200.$

2. Make a Plan

Write an inequality showing profit greater than or equal to \$6000. Then solve the inequality by using algebra.

5-7 Solving Quadratic Inequalities

Example 4 Problem-Solving Application (continued)

3. Solve

Write the inequality. $-8x^2 + 600x - 4200 \ge 6000$ Find the critical values by solving the related equation. $-8x^2 + 600x - 4200 = 6000$ Write as an equation. $-8x^{2} + 600x - 10200 = 0$ Write in standard form. $-8(x^2 - 75x + 1275) = 0$ Factor out – 8 to simplify. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-75) \pm \sqrt{(-75)^2 - 4(1)(1275)}}{2(1)}$ Use the Quadratic Formula. $=\frac{75\pm5\sqrt{21}}{2}$ Simplify. $x \approx 26.05$ or $x \approx 48.95$ Test an x-value in each of the three 5 10 15 20 25 30 35 40 45 50 regions formed by the critical *x*-values. $-8(25)^2 + 600(25) - 4200 \ge 6000$ *Try* x = 25. 5800 ≥ 6000 ¥ $-8(45)^2 + 600(45) - 4200 \ge 6000$ *Try* x = 45. 6600 ≥ 6000 ✓ $-8(50)^2 + 600(50) - 4200 \ge 6000$ *Try* x = 50. 4600 ≥ 6000 ¥

Write the solution as an inequality. The solution is approximately $26.05 \le x \le 48.95$.

5-7 Solving Quadratic Inequalities

Example 4 Problem-Solving Application (continued)

For a profit of at least \$6000, the average price of a helmet needs to be between \$26.05 and \$48.95, inclusive.

4. Look Back

Enter $y = -8x^2 + 600x - 4200$ into a graphing calculator, and create a table of values. The table shows that integer values of *x* between 26.05 and 48.95 inclusive result in *y*-values greater than or equal to 6000.