



#### Lesson Objectives (p. 356):

### Vocabulary

1. Discriminant (p. 357):

## **Key Concepts**

2. The Quadratic Formula (p. 356):

3. Discriminant (p. 358):

The discriminant of the quadratic equation  $ax^2 + bx + c = 0$  ( $a \neq 0$ ) is  $b^2 - 4ac$ .

| $b^2 - 4ac > 0$ | $b^2-4ac=0$ | $b^2 - 4ac < 0$ |
|-----------------|-------------|-----------------|
|                 |             |                 |
|                 |             |                 |
|                 |             |                 |
|                 |             |                 |
|                 |             |                 |
|                 |             |                 |





#### Lesson Objectives (p. 356):

solve quadratic equations using the Quadratic Formula; classify roots using the discriminant.

### Vocabulary

**1.** Discriminant (p. 357): the part of the quadratic formula that you can use to determine the number of roots of a quadratic equation.

## **Key Concepts**

2. The Quadratic Formula (p. 356):

If 
$$ax^2 + bx + c = 0$$
 (a  $\neq 0$ ), then the solutions, or roots, are  

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

3. Discriminant (p. 358):

The discriminant of the quadratic equation  $ax^2 + bx + c = 0$  ( $a \neq 0$ ) is  $b^2 - 4ac$ .

| $b^2 - 4ac > 0$             | $b^2 - 4ac = 0$            | $b^2 - 4ac < 0$                        |
|-----------------------------|----------------------------|----------------------------------------|
| two distinct real solutions | one distinct real solution | two distinct nonreal complex solutions |
|                             |                            |                                        |

# 4. Summary of Solving Quadratic Equations (p. 360):

| METHOD                | WHEN TO USE | EXAMPLES |
|-----------------------|-------------|----------|
| Graphing              |             |          |
| Factoring             |             |          |
| Square roots          |             |          |
| Completing the square |             |          |
| Quadratic<br>formula  |             |          |

4. Summary of Solving Quadratic Equations (p. 360):

| METHOD                | WHEN TO USE                                                                           | EXAMPLES                                                                                                                                                                      |
|-----------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graphing              | Only approximate<br>solutions or the<br>number of real<br>solutions is needed.        | $2x^2 + 5x - 14 = 0$ $x \approx -4.2 \text{ or } x \approx 1.7$                                                                                                               |
| Factoring             | c = 0 or the<br>expression is easily<br>factorable.                                   | $x^{2} + 4x + 3 = 0$<br>(x + 3)(x + 1) = 0<br>x = -3 or x = -1                                                                                                                |
| Square roots          | The variable side of<br>the equation is a<br>perfect square.                          | $(x-5)^2 = 24$ $\sqrt{(x-5)^2} = \pm\sqrt{24}$ $x-5 = \pm 2\sqrt{6}$ $x = 5 \pm 2\sqrt{6}$                                                                                    |
| Completing the square | <i>a</i> = 1 and <i>b</i> is an even number.                                          | $x^{2} + 6x = 10$<br>$x^{2} + 6x + = 10 +$<br>$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 10 + \left(\frac{6}{2}\right)^{2}$<br>$(x + 3)^{2} = 19$<br>$x = -3 \pm \sqrt{19}$ |
| Quadratic<br>formula  | Numbers are large<br>or complicated, and<br>the expression does<br>not factor easily. | $x = \frac{5x^2 - 7x - 8 = 10}{\frac{-(-7) \pm \sqrt{(-7)^2 - 4(5)(-8)}}{2(5)}}$ $x = \frac{7 \pm \sqrt{209}}{10}$                                                            |

**5. Get Organized** Describe the possible solution methods for each value of the discriminant. (p. 360).

| VALUE OF<br>DISCRIMINANT | TYPE OF SOLUTIONS | POSSIBLE SOLUTION<br>METHODS |
|--------------------------|-------------------|------------------------------|
| Negative                 |                   |                              |
| Zero                     |                   |                              |
| Positive                 |                   |                              |

**5. Get Organized** Describe the possible solution methods for each value of the discriminant. (p. 360).

| VALUE OF<br>DISCRIMINANT | TYPE OF SOLUTIONS                      | POSSIBLE SOLUTION<br>METHODS                                                         |
|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------|
| Negative                 | Two distinct complex nonreal solutions | Quadratic Formula,<br>completing the<br>square, square roots                         |
| Zero                     | One distinct real solution             | Quadratic Formula,<br>completing the<br>square, square roots,<br>factoring, graphing |
| Positive                 | Two distinct real solutions            | Quadratic Formula,<br>completing the<br>square, square roots,<br>factoring, graphing |