TEACHING TRANSPARENCY

5-6 Solving Quadratic Equations by the Quadratic Formula

The Quadratic Formula

If $ax^2 + bx + c = 0$ ($a \neq 0$), then the solutions, or roots, are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

TEACHING TRANSPARENCY

5-6 Solving Quadratic Equations by the Quadratic Formula (continued)

Summary of Solving Quadratic Equationsv		
Method	When to Use	Examples
Graphing	Only approximate solutions or the number of real solutions is needed.	$2x^{2} + 5x - 14 = 0$ $x \approx -4.2 \text{ or } x \approx 1.7$
Factoring	c = 0 or the expression is easily factorable.	$x^{2} + 4x + 3 = 0$ (x + 3)(x + 1) = 0 x = -3 or x = -1
Square roots	The variable side of the equation is a perfect square.	$(x-5)^2 = 24$ $\sqrt{(x-5)^2} = \pm\sqrt{24}$ $x-5 = \pm 2\sqrt{6}$ $x = 5 \pm 2\sqrt{6}$
Completing the square	a = 1 and b is an even number.	$x^{2} + 6x = 10$ $x^{2} + 6x + 10 = 10 + 10$ $x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 10 + \left(\frac{6}{2}\right)^{2}$ $(x + 3)^{2} = 19$ $x = -3 \pm \sqrt{19}$
Quadratic Formula	Numbers are large or complicated, and the expression does not factor easily.	$x = \frac{5x^2 - 7x - 8 = 0}{-(-7) \pm \sqrt{(-7)^2 - 4(5)(-8)}}$ $\frac{2(5)}{x = \frac{7 \pm \sqrt{209}}{10}}$