LESSON Problem Solving

5-6 *The Quadratic Formula*

In a shot-put event, Jenna tosses her last shot from a position of about 6 feet above the ground with an initial vertical and horizontal velocity of 20 feet per second. The height of the shot is modeled by the function $h(t) = -16t^2 + 20t + 6$, where *t* is the time in seconds after the toss. The horizontal distance traveled after *t* seconds is modeled by d(t) = 20t.

- 1. Jenna wants to know the exact distance the shot travels at a velocity of 20 feet per second.
 - **a.** Use the Quadratic Formula $t = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ to solve the height function for *t*.
 - **b.** Use the value for *t* and the distance function to find the distance her shot travels.
- **2.** Jenna is working to improve her performance. She makes a table to show how the horizontal distance varies with velocity. Complete the table.

	Velocity (ft/s)	Formula	Time (s)	Distance (ft)
a.	22	$t = \frac{-22 \pm \sqrt{(22)^2 - 4(-16)(6)}}{2(-16)}$	<i>t</i> = −0.23, 1.61	35.4 ft
b.	25			
c.	28			

Jenna has not reached her full potential yet. Her goal is to toss the shot from a height of 6 feet 6 inches with a vertical and horizontal velocity of 30 feet per second. Choose the letter for the best answer.

- **3.** If she achieves her goal, how long will her shot stay in the air?
 - **A** 1.65 s
 - **B** 1.87 s
 - **C** 2.07 s

4. If she achieves her goal, what horizontal distance will the shot travel?

Date Class

- **A** 56.1 ft
- **B** 62.1 ft
- **C** 68.1 ft

LESSON Problem Solving

5-6 *The Quadratic Formula*

In a shot-put event, Jenna tosses her last shot from a position of about 6 feet above the ground with an initial vertical and horizontal velocity of 20 feet per second. The height of the shot is modeled by the function $h(t) = -16t^2 + 20t + 6$, where *t* is the time in seconds after the toss. The horizontal distance traveled after *t* seconds is modeled by d(t) = 20t.

- 1. Jenna wants to know the exact distance the shot travels at a velocity of 20 feet per second.
 - **a.** Use the Quadratic Formula $t = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ to solve the height function for *t*.
 - **b.** Use the value for *t* and the distance function to find the distance her shot travels.
- **2.** Jenna is working to improve her performance. She makes a table to show how the horizontal distance varies with velocity. Complete the table.

	Velocity (ft/s)	Formula	Time (s)	Distance (ft)
a.	22	$t = \frac{-22 \pm \sqrt{(22)^2 - 4(-16)(6)}}{2(-16)}$	<i>t</i> = −0.23, 1.61	35.4 ft
b.	25		t = -0.21, 1.77	44.3 ft
c.	28		t = -0.19, 1.94	54.3 ft

Jenna has not reached her full potential yet. Her goal is to toss the shot from a height of 6 feet 6 inches with a vertical and horizontal velocity of 30 feet per second. Choose the letter for the best answer.

- **3.** If she achieves her goal, how long will her shot stay in the air?
 - **A** 1.65 s
 - **B** 1.87 s
 - **C**2.07 s

- **4.** If she achieves her goal, what horizontal distance will the shot travel?
 - **A** 56.1 ft
 - **B**62.1 ft
 - **C** 68.1 ft

t = -0.25, 1.5

30 ft