Name	Date Class
LESSON Practice C 5-6 The Quadratic Formula	Quadratia Formula
Find the zeros of each function by using the 1. $f(x) = x^2 + 8x - 3$	
1. $f(x) = x + 8x - 3$	2. $g(x) = 2x^2 - 6x - 1$
3. $h(x) = x^2 - x + 12$	4. $f(x) = -2x^2 - 5x + 20$
5. $f(x) = -2x^2 + 6x - 2$	6. $f(x) = 3x^2 - 10x + 4$

Find the type and number of solutions for each equation.

7. $2x^2 + 7 = -4x$	8. $x^2 - 3 = -6x$	9. $4x^2 + 4 = -8x$

Solve.

- **10.** The height h(t) measured in feet of an object dropped by an astronaut on the moon can be approximated by $h(t)=h_0-2.7t^2$, where h_0 is the height from which the object was dropped. About how long would it take an object to fall to the surface of the moon (h = 0) if it were dropped by an astronaut from a height of 6 feet?
- **11.** The height in feet, *h*, of a base jumper jumping off a cliff is given by the equation $h = 3t^2 700t + 2000$, where *t* is the time in seconds. The horizontal distance that he travels from the cliff is given by d = 13t.
- a. How long does it take the base jumper from the time he jumps (t = 0) until he hits ground (h = 0)?
 b. When he reaches the ground, how far away is he from the base of the cliff?
 12. A path of uniform width surrounds a rectangular garden that is 5m wide and 12m long. The area of the path is 168m². Find the width of the path.

5-6 The Quadratic Formula	5-6 The Quadratic Formula
Find the zeros of each function by using the Quadratic Formula, $\mathbf{y} = -\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}$	Find the zeros of each function by using the Quadratic Formula. 1. $f(x) = x^2 + 10x + 9$ 2. $q(x) = 2x^2 + 4x - 12$
1. $f(x) = x^2 + 4$ 2. $f(x) = 2x^2 - 5x + 3$	$x = -9, -1$ $x = -1 \pm \sqrt{7}$
$x^2 + 0x + 4 = 0 \qquad \qquad 2x^2 - 5x + 3 = 0$	3. $h(x) = 3x^2 - 3x + \frac{3}{4}$ 4. $f(x) = x^2 + 2x - 3$
$x = \frac{-0 \pm \sqrt{0^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \qquad \qquad x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot (2) \cdot (3)}}{2 \cdot 2}$	x = 0.5 $x = -3, 1$
$x = \frac{2 \cdot 1}{2 \cdot 1} \qquad \qquad x = \frac{2 \cdot 2}{2 \cdot 2}$	5. $g(x) = 2x^2 + 3x + 1$ 6. $g(x) = x^2 + 5x + -3$
$x = \frac{\pm \sqrt{-16}}{2} \qquad \qquad x = \frac{5 \pm \sqrt{25 - 24}}{4}$	$x = -1, -0.5$ $x = \frac{-5 \pm \sqrt{37}}{2}$
$x = \pm 2i$ $x = 1, 1.5$	
3. $f(x) = x^2 + 2x + 4$ 4. $f(x) = x^2 + 2x$	Find the type and number of solutions for each equation.
$x = -1 \pm i\sqrt{3} \qquad x = 0, -2$	7. $x^2 - 3x = -8$ 8. $x^2 + 4x = -3$ 9. $2x^2 - 12x = -18$ The period colution
Find the value of the discriminant for each function.	Two nonreal solutions Two real solutions One real solution
5. $f(x) = x^2 + x + 4$ 6. $f(x) = -2x^2 + 3x - 1$ 7. $f(x) = 3x^2 + 6x + 3$	Solve. 10. A newspaper delivery person in a car is tossing folded newspapers from
0	the car window to driveways. The speed of the car is 30 feet per second, and the driver does not slow down. The newspapers are tossed horizontally
Find the type and number of solutions for each equation. 8. $x^2 + 2x + 1 = 0$ 9. $2x^2 + x - 4 = 0$	from a height of 4 feet above the ground. The height of the papers as they are thrown can be modeled by $y = -16t^2 + 4$, and the distance they travel to
One real solution Two real solutions	the driveway is <i>d</i> = 30 <i>t</i> . a. How long does it take for a newspaper to land?
10. $2x^2 + 4x + 3 = 0$ 11. $2x^2 - 5x + 3 = 0$	0.5 s
Two nonreal complex solutions Two real solutions	
Solve.	b. From how many feet before the driveway must the papers be thrown?
 The length of a rectangle is 3 feet longer than its width. The area of the rectangle is 270 square feet. 	15 ft
a. What is the width of the rectangle?15 ft	c. The delivery person starts to throw the newspapers at an angle and the height of the papers as they travel can now be modeled by $\gamma = -16t^2 + 12t + 4$.
b. What is the width of the rectangle if the area is only 160 square feet? 11 ft	How long does it take the papers to reach the ground now?
	1 s
Copyright © by Holt, Rinehart and Winston. 43 Holt Algebra 2	Copyright @ by Holt, Rinehart and Winston. 44 Holt Algebra 2
Practice C5-60 The Quadratic FormulaFind the zeros of each function by using the Quadratic Formula.1. $f(x) = x^2 + 8x - 3$ 2. $g(x) = 2x^2 - 6x - 1$ $x = -4 \pm \sqrt{19}$ $x = -4 \pm \sqrt{19}$ $x = -4 \pm \sqrt{19}$ $x = \frac{1 \pm i\sqrt{47}}{2}$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{5 \pm \sqrt{185}}{4}$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{5 \pm \sqrt{13}}{3}$ Find the type and number of solutions for each equation. $7. 2x^2 + 7 = -4x$ $8. x^2 - 3 = -6x$ $9. 4x^2 + 4 = -8x$ Two nonreal solutionsOne real solutionSolve.10. The height $h(t)$ measured in feet of an object dropped by an astronaut on the moon can be approximated by $h(t) = h_0 - 2.7t^2$, where h_0 is the height from which the object was dropped. About how long would it take an object to fall to the surface of the moon $(h = 0)$ if it were dropped by an astronaut from a height of 6 feet?About 1.49 s11. The height in feet, h , of a base jumper jumping of f a cliff is given by the equation $h = 3t^2 - 700t + 2000$, where t is the time in seconds. The horizontal distance that he travels from the cliff is given by $d = 13t$.a. How long does it take the base jumper from the time in seconds. The horizontal distance that he travels from the ground $(h = 0)$?2	Reteach 560 The Quadratic Formula The Quadratic Formula is another way to find the roots of a quadratic equation or the zeros of a quadratic function. Find the zeros of $f(x) = x^2 - 6x - 11$. Step 1 Set $f(x) = 0$. $x^2 - 6x - 11 = 0$ Step 2 Write the Quadratic Formula. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Step 3 Substitute values for <i>a</i> , <i>b</i> , and <i>c</i> into the Quadratic Formula. a = 1, b = -6, c = -11 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)}$ Step 4 Simplify. $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)} = \frac{6 \pm \sqrt{36 + 44}}{2} = \frac{6 \pm \sqrt{80}}{2}$ Step 5 Write in simplest form. $x = \frac{6 \pm \sqrt{80}}{2} = 3 \pm \frac{\sqrt{80}}{2} = 3 \pm \frac{\sqrt{(16)(5)}}{2} = 3 \pm \frac{4\sqrt{5}}{2} = 3 \pm 2\sqrt{5}$ Remember to divide both terms of the numerator by 2 to simplify. Find the zeros of each function using the Quadratic Formula. 1. $f(x) = x^2 + x - 1$ $a = \frac{1}{x}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2a}, b = -\frac{6}{2}, c = -\frac{6}{2a}$
Practice C5-6The Quadratic FormulaFind the zeros of each function by using the Quadratic Formula.1. $f(x) = x^2 + 8x - 3$ 2. $g(x) = 2x^2 - 6x - 1$ $x = -4 \pm \sqrt{19}$ $x = -4 \pm \sqrt{19}$ $x = 1 \pm i\sqrt{47}$ $x = \frac{1 \pm i\sqrt{47}}{2}$ $x = \frac{1 \pm i\sqrt{47}}{2}$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{5 \pm \sqrt{185}}{4}$ 5. $f(x) = -2x^2 + 6x - 2$ $6. f(x) = 3x^2 - 10x + 4$ $x = \frac{3 \pm \sqrt{5}}{2}$ Third the type and number of solutions for each equation.7. $2x^2 + 7 = -4x$ $8. x^2 - 3 = -6x$ $9. 4x^2 + 4 = -8x$ Two nonreal solutionsTwo real solutionsOne real solutionSolve.10. The height $h(t)$ measured in feet of an object dropped by an astronaut on the moon can be approximated by $h(t)=h_0 - 2.7t^2$, where h_0 is the height from which the object to sall to be surface of the moon $(h = 0)$ if it were dropped by an astronaut from a height of 6 feet?About 1.49 s11. The height in feet, h, of a base jumper jumping off a cliff is given by the equation $h = 3t^2 - 700t + 2000$, where <i>t</i> is the time in seconds. The horizontal distance that be travels from the cliff is given by $d = 13t$.a. How long does it take the base jumper from the time he jumps $(t = 0)$ until he hits ground $(h = 0)$?2.9 s<	ReteachItessenReteachThe Quadratic Formula is another way to find the roots of a quadratic equation or the zeros of a quadratic function.Find the zeros of $f(x) = x^2 - 6x - 11$.Step 1 Set $f(x) = 0$. $x^2 - 6x - 11 = 0$ Step 2 Write the Quadratic Formula. $x = -b \pm \sqrt{b^2 - 4ac}$ 2Step 3 Substitute values for $a, b, and c$ into the Quadratic Formula. $a = -1, b = -6, c = -11$ $x = -b \pm \sqrt{b^2 - 4ac}$ $2a$ Step 3 Substitute values for $a, b, and c$ into the Quadratic Formula. $a = -(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}$ $2a$ Step 4 Simplify. $x = -(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}$ $2a$ Step 4 Simplify. $x = -(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}$ $2a$ Step 5 Write in simplest form. $x = \frac{6 \pm \sqrt{80}}{2} = 3 \pm \sqrt{80} = 3 \pm \sqrt{(16)(5)} = 3 \pm \frac{4\sqrt{5}}{2} = 3 \pm 2\sqrt{5}$ Remember to divide both terms of the numerator by 2 to simplify.Find the zeros of each function using the Quadratic Formula.1. $f(x) = x^2 - 6x + 6$ $x^2 + x - 1 = 0$ $x^2 - 6x + 6 = 0$ $a = 1, b = -1, c = -1$ $a = 1, b = -6, c = 6$
Practice CInd the zeros of each function by using the Quadratic Formula.1. $f(x) = x^2 + 8x - 3$ 2. $g(x) = 2x^2 - 6x - 1$ $x = -4 \pm \sqrt{19}$ $x = 3 \pm \sqrt{11}$ 3. $h(x) = x^2 - x + 12$ 4. $f(x) = -2x^2 - 5x + 20$ $\frac{x = 1 \pm i\sqrt{47}}{2}$ 4. $f(x) = -2x^2 - 5x + 20$ $\frac{x = 3 \pm \sqrt{5}}{2}$ $x = -5 \pm \sqrt{185}$ 5. $f(x) = -2x^2 + 6x - 2$ 6. $f(x) = 3x^2 - 10x + 4$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{5 \pm \sqrt{13}}{3}$ Find the type and number of solutions for each equation.7. $2x^2 + 7 = -4x$ 8. $x^2 - 3 = -6x$ 9. $4x^2 + 4 = -8x$ Two nonreal solutionsOne real solutionsOne real solutionSolve.10. The height $h(t)$ measured in feet of an object dropped by an astronaut on the moon can be approximated by $h(t) = h_0 - 2.7t^2$, where h_0 is the height from which the object was dropped. About how long would it take an object to fall to the surface of the moon $(h = 0)$ if it were dropped by an astronaut for a height of 6 feet?About 1.49 s11. The height in feet, h , of a base jumper jumping off a cliff is given by the equation $h = 3t^2 - 700t + 2000$, where t is the time in seconds. The horizontal distance that he travels from the cliff is given by $d = 13t$.a. How long does it take the base jumper from the time in seconds. The horizontal distance that he travels from the cliff is given by $d = 13t$.b. When he reaches the ground, how far away is he from the base of the cliff?b. When he reaches the ground, how far away is he from the base of the cliff?	Reteach The Quadratic Formula The Quadratic Formula is another way to find the roots of a quadratic equation or the zeros of a quadratic function. Find the zeros of $(x) = x^2 - 6x - 11$. Step 1 Set $f(x) = 0$. $x^2 - 6x - 11 = 0$ Step 2 Write the Quadratic Formula. $x = -b \pm \sqrt{b^2 - 4ac}$ Step 3 Substitute values for <i>a</i> , <i>b</i> , and <i>c</i> into the Quadratic Formula. a = 1, b = -6, c = -11 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)}$ Step 4 Simplify. $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)} = 6 \pm \sqrt{36 + 44} = 6 \pm \sqrt{80}$ Step 5 Write in simplest form. $x = \frac{6 \pm \sqrt{80}}{2} = 3 \pm \frac{\sqrt{80}}{2} = 3 \pm \frac{\sqrt{(16)(5)}}{2} = 3 \pm \frac{4\sqrt{5}}{2} = 3 \pm 2\sqrt{5}$ Remember to divide both terms of the numerator by 2 to simplify. Find the zeros of each function using the Quadratic Formula. 1. $f(x) = x^2 + x - 1$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(6)}}{2(1)}$ $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(6)}}{2(1)}$
Practice CInd the zeros of each function by using the Quadratic Formula.1. $f(x) = x^2 + 8x - 3$ 2. $g(x) = 2x^2 - 6x - 1$ $x = -4 \pm \sqrt{19}$ $x = 3 \pm \sqrt{11}$ 3. $h(x) = x^2 - x + 12$ 4. $f(x) = -2x^2 - 5x + 20$ $x = \frac{1 \pm i \sqrt{47}}{2}$ $x = \frac{3 \pm \sqrt{11}}{4}$ 5. $f(x) = -2x^2 + 6x - 2$ 6. $f(x) = 3x^2 - 10x + 4$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{5 \pm \sqrt{13}}{3}$ Find the type and number of solutions for each equation.7. $2x^2 + 7 = -4x$ 8. $x^2 - 3 = -6x$ 9. $4x^2 + 4 = -8x$ Two nonreal solutionsTwo real solutionsOne real solutionsOne real solutionsSolve.10. The height $h(t)$ measured in feet of an object dropped by an astronaut on the moon can be approximated by $h(t) = h_0 - 2.7t^2$, where h_0 is the height from which the object was dropped. About how long would it take an object to fail to the surface of the moon $(h = 0)$ if it were dropped by an astronaut from a height of 6 feet?About 1.49 s11. The height in feet, h , of a base jumper jumping off a cliff is given by the equation $h = 3t^2 - 700t + 2000$, where t is the time in seconds. The horizontal distance that he travels from the cliff is given by $d = 13t$.a. How long does it take the base jumper from the travels in the travels from the cliff?2.9 sb. When he reaches the ground, how far away is he from the base of the cliff?A path of uniform width surrounds a rectangular garden that its 5m wide and 12m long. The area of	Reteach 560 The Quadratic Formula The Quadratic Formula is another way to find the roots of a quadratic equation or the zeros of a quadratic function. Find the zeros of $f(x) = x^2 - 6x - 11$. Step 1 Set $f(x) = 0$. $x^2 - 6x - 11 = 0$ Step 2 Write the Quadratic Formula. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Step 3 Substitute values for <i>a</i> , <i>b</i> , and <i>c</i> into the Quadratic Formula. a = 1, b = -6, c = -11 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)}$ Step 4 Simplify. $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-11)}}{2(1)} = \frac{6 \pm \sqrt{36 + 44}}{2} = \frac{6 \pm \sqrt{80}}{2}$ Step 5 Write in simplest form. $x = \frac{6 \pm \sqrt{80}}{2} = 3 \pm \frac{\sqrt{80}}{2} = 3 \pm \frac{\sqrt{(16)(5)}}{2} = 3 \pm \frac{4\sqrt{5}}{2} = 3 \pm 2\sqrt{5}$ Remember to divide both terms of the numerator by 2 to simplify. Find the zeros of each function using the Quadratic Formula. 1. $f(x) = x^2 + x - 1$ $a = \frac{1}{x}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2}, b = \frac{1}{2}, c = -\frac{1}{2}$ $a = \frac{1}{2a}, b = -\frac{6}{2}, c = -\frac{6}{2a}$