EXPLORATION

A quadratic equation may have two real solutions, one real solution, or two nonreal complex solutions. For a quadratic equation of the form $ax^2 + bx + c = 0$, you can use the values of *a*, *b*, and *c* to determine the type and number of solutions.

1. Complete the table. Use any method to solve each quadratic equation, and then use its values of *a*, *b*, and *c* to evaluate the expression $b^2 - 4ac$.

Equation	Solutions	Value of $b^2 - 4ac$
$x^2 + 5x + 6 = 0$		
$x^2 + 2x + 1 = 0$		
$x^{2} + 4 = 0$		
$x^2 - 6x + 9 = 0$		
$x^2 + 10 = 0$		
$x^2 + 3x - 4 = 0$		

- 2. Based on the table, what type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is 0?
- **3.** What type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is less than 0?
- 4. What type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is greater than 0?

THINK AND DISCUSS

5. Describe how you can determine the type and number of solutions of $x^2 + 4x - 30 = 0$ without solving the equation.

EXPLORATION

A quadratic equation may have two real solutions, one real solution, or two nonreal complex solutions. For a quadratic equation of the form $ax^2 + bx + c = 0$, you can use the values of *a*, *b*, and *c* to determine the type and number of solutions.

1. Complete the table. Use any method to solve each quadratic equation, and then use its values of *a*, *b*, and *c* to evaluate the expression $b^2 - 4ac$.

Equation	Solutions	Value of $b^2 - 4ac$
$x^2 + 5x + 6 = 0$	-3 , -2	1
$x^2 + 2x + 1 = 0$	-1	0
$x^{2} + 4 = 0$	±2i	-16
$x^2 - 6x + 9 = 0$	3	0
$x^2 + 10 = 0$	$\pm i\sqrt{10}$	-40
$x^2 + 3x - 4 = 0$	-4, 1	25

- 2. Based on the table, what type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is 0?
- **3.** What type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is less than 0?
- 4. What type and number of solutions does a quadratic equation have if the value of $b^2 4ac$ is greater than 0? 2 real solutions

THINK AND DISCUSS

- 5. Describe how you can determine the type and number of solutions of $x^2 + 4x 30 = 0$ without solving the equation.
- 2. 1 real solution
- 3. 2 nonreal complex solutions
- 5. Find the value of $b^2 4ac$. For the equation $x^2 + 4x 30 = 0$, this value is 136. Because the value of $b^2 - 4ac$ is greater than 0, the equation has 2 real solutions.