

Example 1 Quadratic Functions with Real Zeros

Find the zeros of $f(x) = 2x^2 - 16x + 27$ using the Quadratic Formula.

$$2x^{2} - 16x + 27 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(-16) \pm \sqrt{(-16)^{2} - 4(2)(27)}}{2(2)}$$

$$x = \frac{16 \pm \sqrt{256 - 216}}{4} = \frac{16 \pm \sqrt{40}}{4}$$

$$x = \frac{16 \pm 2\sqrt{10}}{4} = 4 \pm \frac{\sqrt{10}}{2}$$

Set f(x) = 0.

Write the Quadratic Formula. Substitute 2 for a, – 16 for b, and 27 for c. Simplify.

Write in simplest form.

Check Solve by completing the square.

$$2x^{2} - 16x + 27 = 0$$

$$2(x^{2} - 8x) = -27$$

$$2(x - 4)^{2} = -27 + 32$$

$$2(x - 4)^{2} = 5$$

$$x = 4 \pm \frac{\sqrt{10}}{2}$$

Example 2 Quadratic Functions with Complex Zeros

Find the zeros of $f(x) = 4x^2 + 3x + 2$ using the Quadratic Formula.

$$4x^{2} + 3x + 2 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(3) \pm \sqrt{(3)^{2} - 4(4)(2)}}{2(4)}$$

$$x = \frac{-3 \pm \sqrt{9 - 32}}{2(4)} = \frac{-3 \pm \sqrt{-23}}{8}$$

$$x = \frac{-3 \pm \sqrt{-23}}{8} = -\frac{3}{8} \pm \frac{\sqrt{23}}{8}i$$

Set f(x) = 0.

Write the Quadratic Formula.

Substitute 4 for a, 3 for b, and 2 for c.

Simplify.

Write in terms of i.

Example 3 Analyzing Quadratic Equations by Using the Discriminant

Find the type and number of solutions for each equation.

A. $x^{2} + 36 = 12x$ $x^{2} - 12x + 36 = 0$ $b^{2} - 4ac$ $(-12)^{2} - 4(1)(36)$ 144 - 144 = 0 $b^{2} - 4ac = 0$

The equation has one distinct real solution.

C. $x^{2} + 30 = 12x$ $x^{2} - 12x + 30 = 0$ $b^{2} - 4ac$ $(-12)^{2} - 4(1)(30)$ 144 - 120 = 24 $b^{2} - 4ac > 0$

The equation has two distinct real solutions.

B. $x^{2} + 40 = 12x$ $x^{2} - 12x + 40 = 0$ $b^{2} - 4ac$ $(-12)^{2} - 4(1)(40)$ 144 - 160 = -16 $b^{2} - 4ac < 0$

The equation has two distinct nonreal complex solutions.

Example 4 Sports Application

An athlete on a track team throws a shot put. The height y of the shot put in feet t seconds after it is thrown is modeled by $y = -16t^2 + 24.6t + 6.5$. The horizontal distance x in feet between the athlete and the shot put is modeled by x = 29.3t. To the nearest foot, how far does the shot put land from the athlete?

Step 1 Use the first equation to determine how long it will take the shot put to hit the ground. Set the height of the shot put equal to 0 feet, and use the quadratic formula to solve for *t*.

$$y = -16t^{2} + 24.6t + 6.5$$

$$0 = -16t^{2} + 24.6t + 6.5$$

$$t = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$t = \frac{-(24.6) \pm \sqrt{(24.6)^{2} - 4(-16)(6.5)}}{2(-16)}$$

$$t = \frac{24.6 \pm \sqrt{1021.16}}{32} \approx \frac{24.6 \pm 31.96}{32}$$

$$t \approx \frac{56.56}{32} \approx 1.77 \text{ or } t \approx \frac{-7.36}{32} \approx -0.23$$

The time cannot be negative, so the shot put hits the ground around 1.8 seconds after it is released.

Example 4 Sports Application (continued)

Step 2 Find the horizontal distance that the shot put will have traveled in this time.

 x = 29.3t

 $x \approx 29.3(1.77)$ Substitute 1.77 for t.

 $x \approx 51.86$
 $x \approx 52$ Simplify.

The shot put will have traveled a horizontal distance of about 52 feet.

Check Use substitution to check that the shot put hits the ground after about 1.77 seconds.

$$y = -16t^{2} + 24.6t + 6.5$$

$$y = -16(1.77)^{2} + 24.6(1.77) + 6.5$$

$$y \approx -50.13 + 43.54 + 6.5$$

$$y \approx -0.09 \checkmark$$

The height is approximately
equal to 0 when t = 1.77.