

Lesson Objectives (p. 341):

Vocabulary

1. Completing the square (p. 342):

Key Concepts

2. Square-Root Property (p. 341):

WORDS	NUMBERS	ALGEBRA

3. Completing the Square (p.342):

WORDS	NUMBERS	ALGEBRA

Lesson Objectives (p. 341):

solve quadratic equations by completing the square; write quadratic

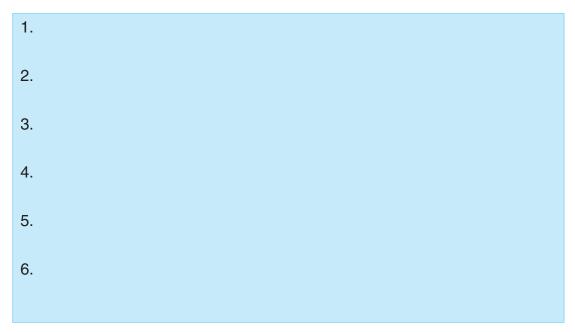
equations in vertex form.

Vocabulary

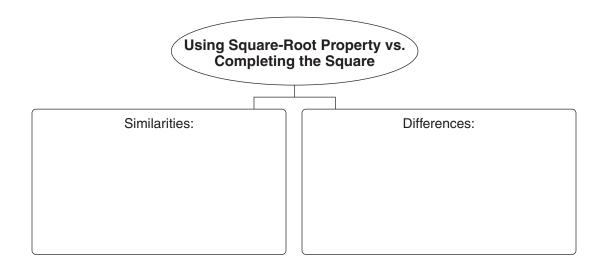
1. Completing the square (p. 342): the process of adding $\left(\frac{b}{2}\right)^2$ to form a perfect

square trinomial.

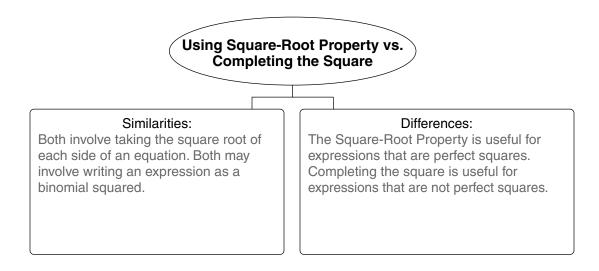
Key Concepts


2. Square-Root Property (p. 341):

WORDS	NUMBERS	ALGEBRA
To solve a quadratic equation, you can take the square root of both sides. Be sure to consider the positive and negative square roots.	$x^{2} = 15$ $\sqrt{x^{2}} = \pm\sqrt{15}$ $x = \pm\sqrt{15}$	If $x^2 = a$ and a is a nonnegative real number, then $x = \pm \sqrt{a}$.


3. Completing the Square (p.342):

WORDS	NUMBERS	ALGEBRA
To complete the square of $x^2 + bx$, add $\left(\frac{b}{2}\right)^2$.	$x^{2} + 6x + (\frac{6}{2})^{2}$ $x^{2} + 6x + 9$ $(x + 3)^{2}$	$x^{2} + bx +$ $x^{2} + bx + \left(\frac{b}{2}\right)^{2}$ $\left(x + \frac{b}{2}\right)^{2}$


4. Solving Quadratic Equations $ax^2 + bx + c = 0$ by Completing the Square (p. 343):

5. Get Organized Compare and contrast two methods of solving quadratic equations. (p. 344).

- **4.** Solving Quadratic Equations $ax^2 + bx + c = 0$ by Completing the Square (p. 343):
 - 1. Collect variable terms on one side of the equation and constants on the other.
 - 2. As needed, divide both sides by *a* to make the coefficient of the x^2 term 1.
 - 3. Complete the square by adding $\left(\frac{b}{2}\right)^2$ to both sides of the equation.
 - 4. Factor the variable expression as a perfect square.
 - 5. Take the square root of both sides of the equation.
 - 6. Solve for the values of the variable.
- **5. Get Organized** Compare and contrast two methods of solving quadratic equations. (p. 344).

