_____ [

Date Class

X

Use with Lesson 5-4 Materials: algebra tiles

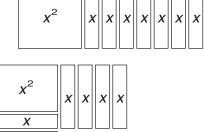
Name

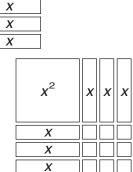
Activity

In this lab you and a partner will be exploring the concept of completing the square by using algebra tiles. To do so, you will find the value of *c* that makes the trinomial $x^2 + bx + c$ a perfect square.

- **Step 1** Use algebra tiles to model the expression $x^2 + 8x$.
- Step 2 Arrange the tiles in a square. Your arrangement will be incomplete in one corner.
- Step 3 Determine the number of unit tiles needed to complete the square.

You can see that $x^2 + 4x + [16] = (x + 4)^2$.


Try This


Using algebra tiles, complete the table below.

1.	Completing the Square		
	Expression	Number of unit tiles needed to complete the square	Expression written as the square of a binomial
	$x^{2} + 2x + $		
	$x^2 + 4x + $		
	$x^2 + 6x + $		
	$x^2 + 8x + \$	16	$x^2 + 8x + 16 = (x + 4)^2$

Look for the pattern in the last column of the table. Consider $x^2 + bx + c = (x + d)^2$.

- 2. How is *d* related to *b* in each case?
- 3. How is c related to d in each case? ____
- **4.** How can you determine the number of unit tiles needed to complete the square from *b* in your given expression?

х

x

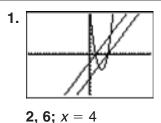
Answer Key continued

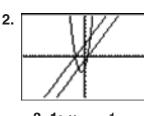
- **4.** *s* is a vertical stretch of *f*, which means that the second arch is narrower than the first arch but that both arches reach the same maximum height.
- 5. Yes; possible answer: The function rules for *f*, *s*, and *t* are identical except for the value of the parameter *a*. The graphs of *f* and *s* show that an increase in the absolute value of *a* results in a narrower arch. Because the absolute value of *a* in *t* is greater than the absolute values of *a* in *f* and *s*, the arch modeled by *t* will be narrower than the arches modeled by *f* and *s*.

LAB 5-4

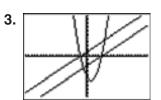
Try This

1.

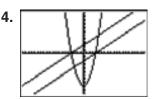

Completing the Square			
Expression	Number of unit tiles needed to complete the square	Expression written as the square of a binomial	
$x^2 + 2x + $	1	$x^2 + 2x + 1 = (x + 1)^2$	
$x^2 + 4x + $	4	$x^2 + 4x + 4 = (x + 2)^2$	
$x^{2} + 6x + $	9	$x^2 + 6x + 9 = (x + 3)^2$	
$x^{2} + 8x + $	16	$x^2 + 8x + 16 = (x + 4)^2$	

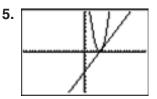

2. *d* = half of *b*

3.
$$c = d^2$$


4. Find the square of half the coefficient *b*.

TECH LAB 5-4







−3, 1; *x* = −1

Yes, because the graphs cross the *x*-axis at the same points.

8. Possible answer: The *x*-intercepts of a quadratic function are the same as the *x*-intercepts of its linear factors. The axis of symmetry is located halfway between the *x*-intercepts.