

Example 1 Solving Equations by Using the Square Root Property

Solve each equation.

A. $4x^2$	+ 11 = 59		
$4x^2 = 48$ Subtract 11 from both s		h sides.	
<i>x</i> ² = 12		Divide both sides by 4 to isolate the square term.	
x = z	$\pm\sqrt{12}$	Take the square root	of both sides.
x = z	$\pm 2\sqrt{3}$	Simplify.	
Check	Use a gra	phing calculator.	4(2J(3))2+11 59

- 4(-2√(3))2+11 B. $x^2 + 12x + 36 = 28$ $(x+6)^2 = 28$ Factor the perfect square trinomial. $x + 6 = \pm \sqrt{28}$ Take the square root of both sides. $x = -6 \pm \sqrt{28}$ Subtract 6 from both sides.
- Simplify. **Check** Use a graphing calculator. (-6+2√(7))2+12(-6+2√(7))+36 28 (-6-24(7))2+12(-6-24(7))+36

 $x = -6 \pm 2\sqrt{7}$

28

59

Example 2 Completing the Square

Complete the square for each expression. Write the resulting expression as a binomial squared.

A.
$$x^{2} - 14x + \square$$

 $\left(\frac{-14}{2}\right)^{2} = (-7)^{2} = 49$ Find $\left(\frac{b}{2}\right)^{2}$.
 $x^{2} - 14x + 49$ Add.
 $(x - 7)^{2}$ Factor.

Check Find the square of the binomial.

$$(x-7)^2 = (x-7)(x-7)$$

= $x^2 - 14x + 49$

B.
$$x^2 + 9x + \square$$

 $\left(\frac{9}{2}\right)^2 = \frac{81}{4}$ Find $\left(\frac{b}{2}\right)^2$.
 $x^2 + 9x + \frac{81}{4}$ Add.
 $\left(x + \frac{9}{2}\right)^2$ Factor.

Check Find the square of the binomial.

$$\left(x+\frac{9}{2}\right)^2 = \left(x+\frac{9}{2}\right)\left(x+\frac{9}{2}\right)$$
$$= x^2 + 9x + \frac{81}{4}$$

Example 3 Solving a Quadratic Equation by Completing the Square

Solve each equation by completing the square.

A.
$$x^2 = 12x - 20$$

 $x^2 - 12x = -20$ Collect variable terms on one side.
 $x^2 - 12x + \square = -20 + \square$ Set up to complete the square.
 $x^2 - 12x + \left(-\frac{12}{2}\right)^2 = -20 + \left(-\frac{12}{2}\right)^2$ Add $\left(\frac{b}{2}\right)^2$ to both sides.
 $x^2 - 12x + 36 = -20 + 36$ Simplify.
 $(x - 6)^2 = 16$ Factor.
 $x - 6 = \pm\sqrt{16}$ Take the square root of both sides.
 $x - 6 = \pm 4$ Simplify.
 $x - 6 = 4$ or $x - 6 = -4$ Solve for x.
 $x = 10$ or $x = 2$

B. $18x + 3x^2 = 45$

 $x^2 + 6x = 15$ Divide both sides by 3. $x^2 + 6x + \square = 15 + \square$ Set up to complete the

square. $x^2 + 6x + \left(\frac{6}{2}\right)^2 = 15 + \left(\frac{6}{2}\right)^2$ Add $\left(\frac{b}{2}\right)^2$ to both sides. $x^2 + 6x + 9 = 15 + 9$ Simplify.

 $x + 3 = \pm \sqrt{24}$ Take the square root of both sides.

 $x = -3 \pm 2\sqrt{6}$ Simplify.

 $(x+3)^2 = 24$ *Factor.*

Example 4 Writing a Quadratic Function in Vertex Form

Write each function in vertex form, and identify its vertex.

A.
$$f(x) = x^{2} + 16x - 12$$

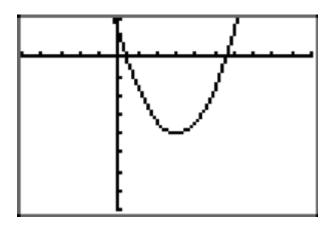
 $f(x) = (x^{2} + 16x + \square) - 12 - \square$ Set up to complete the square.
 $f(x) = \left[x^{2} + 16x + \left(\frac{16}{2}\right)^{2}\right] - 12 - \left(\frac{16}{2}\right)^{2}$ Add and subtract $\left(\frac{b}{2}\right)^{2}$.
 $f(x) = (x + 8)^{2} - 76$ Simplify and factor.
Because $h = -8$ and $k = -76$, the vertex is $(-8, -76)$.

Check Use the axis of symmetry formula to confirm the vertex.

$$x = -\frac{b}{2a} = -\frac{16}{2(1)} = -8$$

$$y = f(-8) = (-8)^2 + 16(-8) - 12 = -76 \checkmark$$

284



Example 4 Writing a Quadratic Function in Vertex Form (continued)

B.
$$g(x) = 3x^2 - 18x + 7$$

 $g(x) = 3(x^2 - 6x) + 7$
 $g(x) = 3(x^2 - 6x + 1) + 7 - 1$
 $g(x) = 3[x^2 - 6x + (-\frac{6}{2})^2] + 7 - 3(-\frac{6}{2})^2$ Add $(\frac{b}{2})^2$. Because
 $\left(\frac{b}{2}\right)^2$ is multiplied by
3, you must subtract
 $g(x) = 3(x - 3)^2 - 20$
Simplify and factor.

Because h = 3 and k = -20, the vertex is (3, -20).

Check A graph of the function on a graphing calculator supports your answer.

