ADDITIONAL EXAMPLES

Example 1 Representing a Network with an Adjacency Matrix

In the network shown below, find the number of ways to go from *A* to *F* with exactly three stops in between (4-step paths).

a207_ADDEX_ C04EXT_t01: P/U, TE P.297 q01

First, write the adjacency matrix *Q* that represents the network. This adjacency matrix shows the number of 1-step paths.

	To:	A	В	С	D	Ε	F	Rocause there is a 1 step
From:	A B	0 0	1 0	0 0	1 1	0	0	Because there is a 1-step path (an arrow) from A to B, put a 1 in row 1 column 2.
	С	0	1	0	0	0	1	,
	D	0	0	0	0	1	0	Because there is no 1-step
	E	1	1	1	0	0	0	path (an arrow) from B to A,
	F	0	1	0	0	1	0	put a 0 in row 2 column 1.

The fourth power of this adjacency matrix shows the number of 4-step paths (with one stop at a vertex in between).

	2	6	2	5	3	5		To:	Α	В	С	D	Ε	F	
	2	9	2	6	10	6	From:	Α	[2	6	2	5	3	5]	
	3	8	3	5	5	5		B	2	9			10	6	
	1	3	1		-	2		C		8				5	
	6		6		7			D	1			2	6	2	
	3	7	3	5	8	5		Е	6	10	6	4	7	4	
Q^4 shows that there are five									3	7	3	5	8	5	
4-step paths from A to F.															