TEKS 2A.3.B

4-4

Lesson Objectives (p. 270):	
Vocabulary	
1. Determinant (p. 270):	
2. Coefficient matrix (p. 271):	
3. Cramer's rule (p. 271):	

Key Concepts

4. Determinant of a 2 \times 2 Matrix (p. 270):

WORDS	NUMBERS	ALGEBRA

5. Cramer's Rule for Two Equations (p. 271):

Lesson Objectives (p. 270):

find the determinants of 2 \times 2 and 3 \times 3 matrices; use Cramer's rule to solve

systems of linear equations.

Vocabulary

1. Determinant (p. 270): the difference of the products of the diagonals on a

 2×2 matrix.

- **2.** Coefficient matrix (p. 271): the matrix formed by the coefficients for the variables in a system of linear equations.
- 3. Cramer's rule (p. 271): a calculated value used to tell whether a system of

linear equations has one solution, no solution, or infinitely many solutions.

Key Concepts

4. Determinant of a 2 \times 2 Matrix (p. 270):

WORDS	NUMBERS	ALGEBRA
The determinant of a 2 by 2 matrix is the difference of the products of the diagonals.	$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \\ + \begin{vmatrix} 1 \\ 2 \\ 4 \end{vmatrix} = (1)(4) - (3)(2) = -2$	$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \\ + \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$

5. Cramer's Rule for Two Equations (p. 271):

$$\left\{\frac{a_1x + b_1y = c_1}{a_2x + b_2y = c_2}\text{ has solutions } x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{D}, \text{ where } D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_1 \end{vmatrix}\right\}$$

6. Solutions of Systems (p. 271)

Solutions of Systems			

7. Cramer's Rule for Three Equations (p. 273):

6. Solutions of Systems (p. 271)

Solutions of Systems			
If $D \neq 0$ the system is consistent and has one unique solution.	If $D = 0$ and at least one numerator determinant is 0, the system is dependent and has infinitely many solutions.	If $D = 0$ and neither numerator determinant is 0, the system is inconsistent and has no solution.	

7. Cramer's Rule for Three Equations (p. 273):

The system
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_2x + b_2y + c_2z = d_3 \end{cases}$$
has solutions given by
$$x = \frac{\begin{vmatrix} d_1 \\ d_2 \\ d_3 \\ b_3 \\ c_3 \end{vmatrix}, y = \frac{\begin{vmatrix} a_1 \\ d_1 \\ a_2 \\ d_3 \\ c_3 \\ D \end{vmatrix}, z = \frac{\begin{vmatrix} a_1 \\ b_1 \\ a_2 \\ a_3 \\ d_3 \\ c_3 \\ D \end{vmatrix}, z = \frac{\begin{vmatrix} a_1 \\ b_1 \\ a_2 \\ a_3 \\ d_3 \\$$