TEACHING TRANSPARENCY

4-4 Determinants and Cramer's Rule

Determinant of a 2×2 Matrix

WORDS	NUMBERS	ALGEBRA
The determinant of a 2 by 2 matrix is the difference	$det \left[\begin{array}{c} 1 & 2 \\ 3 & 4 \end{array} \right] =$	$det \left[\begin{array}{c} a & b \\ c & d \end{array} \right] =$
of the products of the diagonals	$\frac{+}{-} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4)$ $- (3)(2) = -2$	$\left. \begin{array}{c} + \\ - \\ c \end{array} \right \left. \begin{array}{c} a \\ c \end{array} \right = ad - cb$

Cramer's Rule for Two Equations

$$\begin{cases} a_{1}x + b_{1}y = c_{1} \\ a_{2}x + b_{2}y = c_{2} \end{cases} \text{ has solutions } x = \frac{\begin{vmatrix} c_{1} & b_{1} \\ c_{2} & b_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix}}{D}, y = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2$$

TEACHING TRANSPARENCY

4-4 Determinants and Cramer's Rule (continued)

Cramer's Rule for Three Equations

The system
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

$$x = \frac{\begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}}{D}, z = \frac{\begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}}{D}$$

where $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D \neq 0$.