LESSON Using Matrices to Transform 4-3 Geometric Figures

Le	esson Objectives (p. 262):	
Vo	cabulary	
1.	Translation matrix (p. 262):	
2.	Reflection matrix (p. 263):	
3.	Rotation matrix (p. 264):	

Key Concepts

4. Get Organized Complete the summary by filling in a matrix expression. *Q* is a triangle represented by its 2×3 coordinate matrix. (p. 264).

TRANSFORMATION	MATRIX OPERATION
Translate Q vertically	
Translate Q horizontally	
Enlarge or reduce Q	
Reflect <i>Q</i> across the <i>x</i> -axis or <i>y</i> -axis	
Rotate <i>Q</i> 90° clockwise or counterclockwise	

LESSON Using Matrices to Transform 4-3 Geometric Figures

Lesson Objectives (p. 262):

use matrices to transform a plane figure.

Vocabulary

- 1. Translation matrix (p. 262): a matrix used to translate coordinates on the coordinate plane.
- 2. Reflection matrix (p. 263): a matrix that creates a mirror image by reflecting each vertex over a specific line of symmetry.
- 3. Rotation matrix (p. 264): a matrix used to rotate a figure.

Key Concepts

4. Get Organized Complete the summary by filling in a matrix expression. *Q* is a triangle represented by its 2×3 coordinate matrix. (p. 264).

TRANSFORMATION	MATRIX OPERATION
Translate Q vertically	$Q + \begin{bmatrix} 0 & 0 & 0 \\ -2 & -2 & -2 \end{bmatrix}$
Translate Q horizontally	$Q + \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & 0 \end{bmatrix}$
Enlarge or reduce Q	4 <i>Q</i> , or 0.5 <i>Q</i>
Reflect <i>Q</i> across the <i>x</i> -axis or <i>y</i> -axis	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} Q, \text{ or } \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} Q$
Rotate Q 90° clockwise or counterclockwise	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} Q, \text{ or } \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} Q$