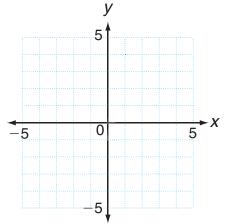


Using Matrices to Transform Geometric Figures

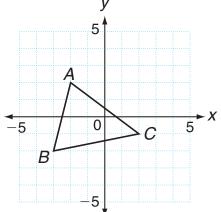

You can use matrices to describe figures in the coordinate plane.

	Point A	Point B	Point C
<i>x</i> -coordinate			
<i>y</i> -coordinate			

- **2.** Create a matrix *P* based on the data in the table.
- **3.** Find the sum P + R when $R = \begin{bmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \end{bmatrix}$
- **4.** Use the columns of the matrix you found in Problem 3 as the coordinates of the vertices of a triangle $\triangle A'B'C'$. Plot the vertices of $\triangle A'B'C'$ to graph the triangle.

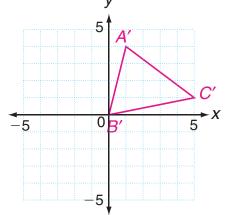
THINK AND DISCUSS

- **5. Describe** how $\triangle A'B'C'$ is related to $\triangle ABC$.
- **6. Discuss** what would have happened if you have added the matrix $\begin{bmatrix} 3 & 3 & 3 \\ -2 & -2 & -2 \end{bmatrix}$ to matrix P.


EXPLORATION

4-3

Using Matrices to Transform Geometric Figures


You can use matrices to describe figures in the coordinate plane.

 Complete the table by finding the coordinates of the vertices of *∧ABC*.

	Point A	Point B	Point C
<i>x</i> -coordinate	-2	-3	2
<i>y</i> -coordinate	2	-2	-1

- **2.** Create a matrix *P* based on the data in the table. $P = \begin{bmatrix} -2 & -3 & 2 \\ 2 & -2 & -1 \end{bmatrix}$
- 3. Find the sum P + R when $R = \begin{bmatrix} 3 & 3 & 3 \\ 2 & 2 & 2 \end{bmatrix}$ $P + R = \begin{bmatrix} 1 & 0 & 5 \\ 4 & 0 & 1 \end{bmatrix}$.
- **4.** Use the columns of the matrix you found in Problem 3 as the coordinates of the vertices of a triangle $\triangle A'B'C'$. Plot the vertices of $\triangle A'B'C'$ to graph the triangle.

THINK AND DISCUSS

- **5. Describe** how $\triangle A'B'C'$ is related to $\triangle ABC$.
- **6. Discuss** what would have happened if you have added the matrix $\begin{bmatrix} 3 & 3 & 3 \\ -2 & -2 & -2 \end{bmatrix}$ to matrix P.
- 5. $\triangle A'B'C'$ is a translation of $\triangle ABC$. $\triangle ABC$ is translated 3 units right and 2 units up.
- 6. $\triangle ABC$ would have been translated 3 units right and 2 units down.