

Lesson Objectives (p. 253):

Vocabulary

- 1. Matrix product (p. 253): _____
- 2. Square matrix (p. 255):
- **3.** Main diagonal (p. 255):

4. Multiplicative identity matrix (p. 255):

Key Concepts

- 5. Multiplying Matrices—Rules (p. 253):
 - Matrices A and B can be multiplied only ______.
 The product of an *m* × *n* and an *n* × *p* matrix is ______.

6. Multiplying Matrices (p. 254):

WORDS	NUMBERS	ALGEBRA

Lesson Objectives (p. 253):

understand the properties of matrices with respect to multiplication; multiply

two matrices.

Vocabulary

- 1. Matrix product (p. 253): the product of two or more matrices.
- 2. Square matrix (p. 255): any matrix that has the same number of rows as columns.
- **3.** Main diagonal (p. 255): the diagonal from the upper left corner to the lower right corner of a square matrix.
- 4. Multiplicative identity matrix (p. 255): any square matrix named with the letter

I, that has all of the entries along the main diagonal equal to 1 and all of the

other entries equal to 0.

Key Concepts

- 5. Multiplying Matrices—Rules (p. 253):
 - Matrices A and B can be multiplied only if the number of columns in A equals the number of rows in B
 - The product of an $m \times n$ and an $n \times p$ matrix is <u>an $m \times p$ matrix</u>.

6. Multiplying Matrices (p. 254):

WORDS	NUMBERS	ALGEBRA
In a matrix product P = AB, each element p_{ij} is the sum of the products of consecutive entries in row <i>i</i> in matrix <i>A</i> and column <i>j</i> in matrix <i>B</i> .	$P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix}$	$P = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix} = \begin{bmatrix} a_1c_1 + a_2d_1 & a_1c_2 + a_2d_2 \\ b_1c_1 + b_2d_1 & b_1c_2 + b_2d_2 \end{bmatrix}$

7. Multiplicative Identity Matrix (p. 255):

The multiplicative identity matrix is any square matrix, named with the letter *I*, that has

8. Get Organized In the decision diamond, enter a question to determine whether *AB* is defined. Then give the general procedure for finding *AB*, if it is defined. (p. 256).

7. Multiplicative Identity Matrix (p. 255):

The multiplicative identity matrix is any square matrix, named with the letter *I*, that has

all of the entries along the main diagonal equal to 1 and all of the

other entries equal to 0.

8. Get Organized In the decision diamond, enter a question to determine whether *AB* is defined. Then give the general procedure for finding *AB*, if it is defined. (p. 256).

