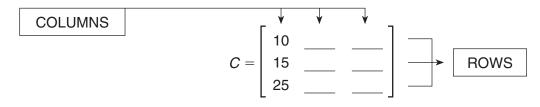
SECTION Ready To Go On? Skills Intervention 4-1 Matrices and Data

Find these vocabulary words in Lesson 4-1 and the Multilingual Glossary.

Vocabulary					
matrix	dimensions	entry	address	scalar	

Displaying Data in Matrix Form
Use the table of data to answer each question.


Plain	Color	With Borders	
10	14	18	
15	20	26	
25	30	34	

- a. Display the data in the form of a matrix, C.
- it represent? d. What is the address of the entry that

has the value 26?

c. What is the entry at c_{13} ? What does

- b. What are the dimensions of Matrix C?
- a) Find the value in the first column of the first row of the table. Write this value in the first column of the first row of the matrix. Do the same for the other values.

b) How many rows are in the table? _____ How many columns? _____

Matrix *C* is a ____ (rows) \times ____ (columns) matrix.

c) What does the 1 in c_{13} describe? _____ What does the 3 in

 c_{13} describe? _____ What is the value in c_{13} ? _____

d) Find the value 26 in the matrix. What row is this value in? _____

What column is it in? _____ What is the address of 26? _____

Finding Matrix Sums and Differences

Find
$$A + B$$
. $A = \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 5 & -2 \\ 2 & 0 \end{bmatrix}$

Add the values in *B* that correspond to the values in *A*.

$$\begin{bmatrix} 3+5 & -1+(-2) \\ 0+ & 4+ & \end{bmatrix} = \begin{bmatrix} 8 & -3 \\ & & \end{bmatrix}$$

Corresponding values: Row 1 Column 1 of A corresponds to Row 1 Column 1 of B.

SECTION Ready To Go On? Skills Int	ervention
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the M	Multilingual Glossary.
Vocabulary	
matrix product square matrix main diagor	nal multiplicative identity matrix
Multiplying Matrices Tell whether each product is defined. If so, give its d	imensions.
A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ	
What are the inner dimensions? 2 and Are the	y equal?
Is the matrix product defined?	
B. $R_{2\times4}$ and $S_{4\times1}$; <i>RS</i>	
What are the inner dimensions? and 4 Are the	y equal?
Is the matrix product defined? What are the dir	nensions of <i>RS</i> ?
Finding the Matrix Product Find the product AB.	1
Find the product AB. $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$] ← ROW 1
What are the dimensions of <i>A</i> and <i>B</i> ? <i>A</i> : \times	B: ×
What are the dimensions of <i>A</i> and <i>B</i> ? <i>A</i> : $_$ × $_$ What are the dimensions of the product <i>AB</i> ? $_$ × $_$	
Multiply row 1 of <i>A</i> by column 1 of <i>B</i> . $2(4) + 0(-3) + -1$	(2) =
Place the answer in row 1, column 1 of the product matri	ix.
Multiply row 1 of <i>A</i> by column 2 of <i>B</i> (0) + 0 +	1(5) =
Place the answer in row 1, column 2 of the product matri	ix.
Multiply row 2 of A by column 1 of B. 2 of B. $(4) + (4)$	(-3) +(2) =
Place the answer in row 2, column 1 of the product matri	ix.
Multiply row 2 of <i>A</i> by column 2 of <i>B</i> . 3() + () + () =
Place the answer in row 2, column 2 of the product matri	ix.

Name _____ Date _____ Class _____

SECTION Ready To Go On? Skills Intervention

4A 4-3 Using Matrices to Transform Geometric Figures

Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary.

Vocabulary

translation matrix	reflection matrix	rotation matrix

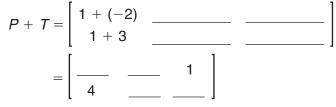
Using Matrices to Translate a Figure

Translate $\triangle ABC$ with coordinates A(1, 1), B(-1, 2), and C(3, 4) two units left and three units up. Find the coordinates of the vertices of the image, and graph.

What are the x-coordinates of the vertices of $\triangle ABC$? 1, ____, and ____

What are the y-coordinates of the vertices of $\triangle ABC$? 1, ____, and ____

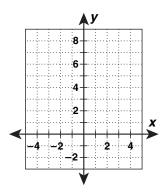
Write the x-coordinates in the first row of the matrix and the y-coordinates in the second row.


 $P = \begin{bmatrix} 1 & \dots & \\ 1 & \dots & \\ - & - & - \end{bmatrix} \leftarrow x \text{-coordinates}$

You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each x-coordinate will move 2 units left and each y-coordinate 3 units up.

Complete the translation matrix, T.

$$T = \begin{bmatrix} -2 & \\ 3 & \\ \end{bmatrix} \quad \underbrace{-x \text{-coordinates}}_{\leftarrow y \text{-coordinates}}$$


Add the matrices together to find the vertices of the translated image.

What are the coordinates of the vertices of the translated triangle?

A' (-1, 4), B' (____, ___), and C' (____, ___).

Graph the translated triangle on the grid.

Date	Class	
Date	0.000	

SECTION Ready To Go On? Quiz

4A

5.

Name

4-1 Matrices and Data Use the table for Exercises 1–4.

1. Display the data in the form of a matrix, *M*.

<i>M</i> =		 	
	L]	

Toddlers in Gymnastics Classes									
Morning Afternoon Evening									
Monday	8	6	12						
Wednesday	6	4	10						
Friday	11	15	19						

- **2.** What are the dimensions of $M? ___ \times __$
- **3.** What is the value of the matrix entry with the address m_{13} ?
- 4. What is the address of the entry that has the value 4? _____

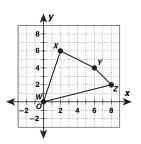
Use the matrices below for Exercises 5-8. Evaluate if possible.

$$A = \begin{bmatrix} 2 & -5 \\ 0 & 3 \\ 1 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & -2 \\ 1 & 3 \\ 4 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 6 & 3 & -2 \\ -2.5 & 1 & -1 \end{bmatrix}$$
$$A + C \qquad \qquad 6. 2B$$

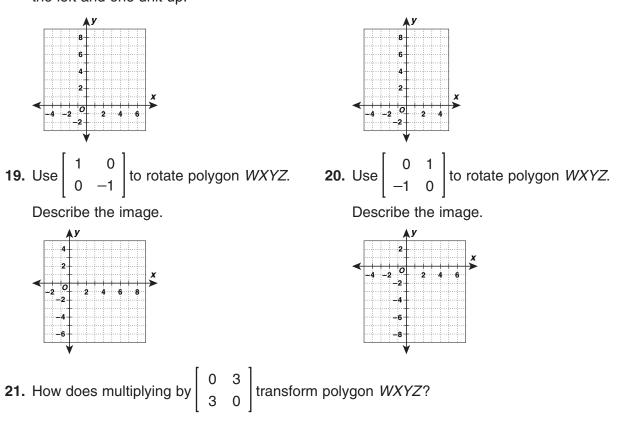
7. $\frac{1}{2}C - D$ **8.** C - 3A

4-2 Multiplying Matrices

Use the matrices named below for Exercises 9–12. Tell whether each product is defined. If so, give its dimensions.


$P_{3 \times 2}$	$Q_{2 imes 3}$	$R_{1 imes 3}$	$S_{3 imes 2}$
9. PQ	-	10. <i>RS</i>	
11. QR		12. SP	

SECTION Ready To Go On? Quiz continued 4Δ


Use the matrices below for Exercises 13–16. Evaluate, if possible.

4-3 Using Matrices to Transform Geometric Figures For Exercises 17–20, use polygon WXYZ with coordinates W(0, 0), X(2, 6), Y(6, 4), and Z(8, 2). Give the coordinates of the image and graph.

- **17.** Translate polygon *WXYZ* two units to the left and one unit up.
- **18.** Reduce polygon *WXYZ* by a factor of $\frac{1}{2}$.

SECTION Ready To Go On? Enrichment **4**A

Matrices

Use matrix operations to determine Matrix X.

1. $2X + 2$	4	-2	_	8	6	$X = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}$
	3	1]		0	-2	

2.
$$X - 2 \begin{bmatrix} 2 & 5 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 2 & 0 \end{bmatrix}$$
 $X = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$

3.
$$3X - \begin{bmatrix} 3 & -6 & 0 \\ 7 & 1 & 2 \end{bmatrix} = 2 \begin{bmatrix} 3 & 6 & 3 \\ -8 & 1 & 2 \end{bmatrix}$$
 $X = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Solve for x and y.

4. $3[x \ y] = [x \ 2] + [6 \ y]$ x =____ and y =____

5.
$$\begin{bmatrix} x+4 & 2\\ 5 & -y \end{bmatrix} + \begin{bmatrix} 2 & 3\\ 6 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 5\\ 11 & 9 \end{bmatrix}$$
 $x = ___$ and $y = ___$
6. $\begin{bmatrix} 2x+4 & -3\\ 1 & x \end{bmatrix} + \begin{bmatrix} y & 10\\ 4 & 2y \end{bmatrix} = \begin{bmatrix} 6 & 7\\ 5 & -2 \end{bmatrix}$ $x = ___$ and $y = ___$

SECTION Ready To Go On? Skills Intervention

4B 4-4 Determinants and Cramer's Rule

Find these vocabulary words in Lesson 4-4 and the Multilingual Glossary.

Vocabulary		
determinant	coefficient matrix	Cramer's rule

Finding the Determinant of a Matrix

Find the determinant of each matrix.

A. $A = \begin{bmatrix} 4 & 2 \\ 3 & -1 \end{bmatrix}$ What is the product of the first diagonal? $4 \times ___ = ___$ What is the product of the second diagonal? $3 \times ___ = __$ $det A = first diagonal - second diagonal = ____ - ___ = ___$ **B.** $A = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 4 & 0 \\ 3 & -2 & 4 \end{bmatrix}$ where the first so that the first two columns are repeated to the right. $A = \begin{vmatrix} 2 & -3 & 1 \\ -1 & 4 & 0 \\ 3 & -2 & 4 \end{vmatrix} - \begin{vmatrix} 2 & \\ 4 &$ Multiply the numbers in the first downward diagonal. 2(4)(4) =_____ Multiply the numbers in the second downward diagonal. $-3(__)(__) = __$ Multiply the numbers in the third downward diagonal. $1(__)(__) = __$ Add the products of each diagonal. 32 + _____ + ____ = ____ Multiply the numbers in the first upward diagonal. 3(4)(1) =_____ Multiply the numbers in the second upward diagonal. $-2(_)(_) = _$ Multiply the numbers in the third upward diagonal. $4(__)(__) = __$ Add the products of each diagonal. $___ + 0 + ___ = ___$ det A = sum of downward diagonals - sum of upward diagonal

= _____

= ____ - ____

Name		Date 0	Class
	On? Skills I	ntervention	
	rses and Solvin	_	
Find these vocabulary words	in Lesson 4-5 and th	e Multilingual Gloss	ary.
Vocabulary			
multiplicative inverse matrix	matrix equation	variable matrix	constant matrix
Finding the Inverse of a 2 Find the inverse of the matrix		fined.	
Find the determinant. (1)()	- 2() =		
Does the matrix have an invers	e?	$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	
The inverse $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d \\ -c \end{bmatrix}$	-b a]	<i>େ</i> ି d	
Substitute values. $A^{-1} = \frac{1}{\Box}$		$\begin{bmatrix} -\frac{1}{2}(4) & -\frac{1}{2} \end{bmatrix}$	_2
Multiply the fraction by each va	lue in the matrix. A^{-1} =	$= \begin{bmatrix} 2 & 2 \\ -\frac{1}{2}(-2) & -\frac{1}{2} \end{bmatrix}$	
Solving Systems Using In Write and solve the matrix eq	verse Matrices	$\int x + 3y = 9$	
Write the coefficients in the first matrix.	Write the variables i second matrix.		ne constants in a atrix.
A [] 2 -1]	$\begin{bmatrix} \square \\ y \end{bmatrix}$		B [9] [□ □]
det <i>A</i> = (-1) - 2(()) = ($A^{-1} =$		
$X \qquad A^{-1}$	В	l	
Solve. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} & & \\ &$	$ \begin{array}{c} 9\\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ostitute the inverse and rices.	d the constant
What is the solution? (,)		

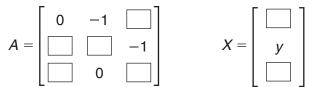
SECTION Ready To Go On? Problem Solving Intervention **4B** 4-5 Matrix Inverses and Solving Systems

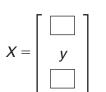
Matrix equations, AX = B can be used to solve systems of equations; A is the coefficient matrix. B is the constant matrix and X is the variable matrix.

You are writing a proposal for buying and selling office equipment as a system of equations. Let x = the price of a laptop, y = the price of a x + y - z = 430 printer, and z = the price of a fax machine. What is the price of each 2x + 3z = 2410type of equipment?

Understand the Problem

- 1. Which equation represents selling a printer and buying two fax machines?
- 2. Which equation represents buying a laptop and a printer, and selling a fax


machine?


Make a Plan

3. Write a matrix to represent the coefficients of the system.

4. Write a matrix to represent the variables of the system.

5. Write a matrix to represent the constants of the system.

B =

Solve

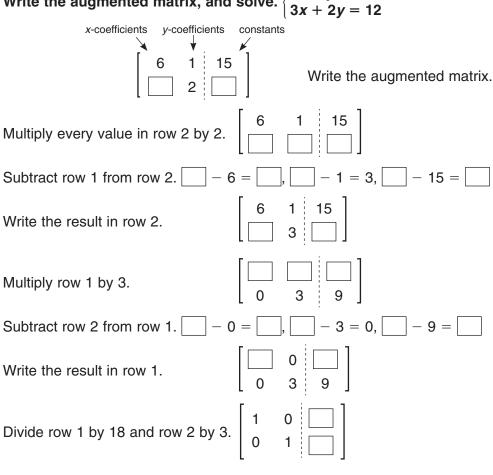
6. Write the matrix equation for the system as AX = B.

rewrite the equation to solve for X.

7. Use the inverse function on your $X = A^{-1}B = \begin{bmatrix} 3 & 3 & \\ & & 2 \\ & & -2 & \end{bmatrix} \begin{bmatrix} 470 \\ & & 2 \\ & & -2 & \end{bmatrix} = \begin{bmatrix} 210 \\ & & \\$

8. How much is a laptop? a printer? a fax machine?

Look Back


9. Substitute the values you calculated into one of the equations in the system. Try

x + y - z = 430. (_____) + (_____) - (_____) = 430 Do you yield the correct result? _____

		kills Interve d Augmented I	
Find these vocabulary	words in Lesson	4-6 and the Multiling	jual Glossary.
Vocabulary augmented matrix	row operation	row reduction	reduced row-echelon form
Solving Systems wi	th an Augmente	d Matrix	
Write the augmented n	[6x + v = 15	

Date

Class

The solution is x =____ and y =____.

Check your answer by substituting the values of x and y into each of the original equations in the system.

6x + y = 15 3x + 2y = 12

 $6(__) + (__) = 15$ $3(__) + 2(__) = 12$

____ = 15 _____ = 12

Name

Ready To Go On? Problem Solving Intervention 4B *4-6 Row Operations and Augmented Matrices*

The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply.

2a + 2b + c + 2.20 = 10.653a + 2b + 2c + 2.20 = 12.634a + 3b + 2c + 2.20 = 16.11

Understand the Problem

- 1. What are the three types of art supplies? _____
- 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles

of brushes?

3. The cost of the basket into which the supplies are placed is included in each equation.

What is the cost of each basket?

4. What information are you trying to find?

Make a Plan

5. Rewrite the equations with the constants on one side.

 $2a + 2b + c + 2.20 = 10.65 \quad 3a + 2b + 2c + 2.20 = 12.63 \quad 4a + 3b + 2c + 2.20 = 16.11$ $-2.20 \quad -2.20 \quad -2.20 \quad -2.20 \quad -2.20$

6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 1 & 8.45 \\ 2 & 2 & 10.43 \\ 4 & 2 & 2 \end{bmatrix}$

Solve

- **7.** Enter the 3×4 augmented matrix into your calculator as *A*.
- 8. Press and select and . Move down the list to B:rref. Find the reduced row-echelon form of the augmented matrix.
- 9. How much does one box of pencils cost? _____ one box of paints? _____

one bundle of brushes? _____

Look Back

10. Substitute the values for *a*, *b*, and *c* into one of the equations in the system.

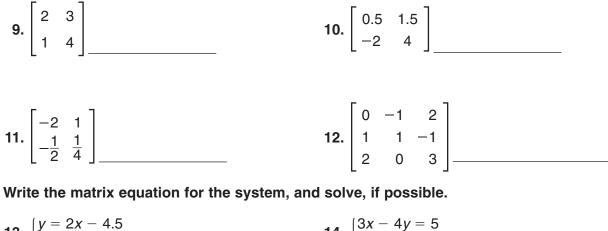
 $2(__) + 2(__) + (__) + 2.20 = 10.65$

Do your values yield the correct result?

4R

SECTION Ready To Go On? Quiz

4-4 Determinants and Cramer's Rule


Find the determinant of each matrix.

1.
$$\begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}$$
 2. $\begin{bmatrix} \frac{1}{3} & 6 \\ 0 & \frac{3}{4} \end{bmatrix}$ 3. $\begin{bmatrix} 0.25 & 1.5 \\ -2.5 & 8.0 \end{bmatrix}$ 4. $\begin{bmatrix} -1 & 3 & 2 \\ 2 & -1 & 0 \\ 1 & 2 & -3 \end{bmatrix}$ Use Cramer's rule to solve.
5. $\begin{bmatrix} y = 2x + 1 \\ 2x - 4y = 1 \end{bmatrix}$ 6. $\begin{bmatrix} 2x - 2y = 2 \\ y - x - 1 = 0 \end{bmatrix}$

7.
$$\begin{cases} 2x + 3y = 6 \\ y = 1 - x \end{cases}$$
8.
$$\begin{cases} 2x - 2y + z = -5 \\ x + 2y = 3z + 3 \\ z = 2x + 1 \end{cases}$$

4-5 Matrix Inverses and Solving Systems

Find the inverse of each matrix, if it is defined.

12	y = 2x - 4.5	1/	3x - 4y = 5
15.	y = 2x - 4.5 5y - x = 0	14.	3x - 4y = 5 2(x + y) + 6 = 0

	5x + 4y = 19		4x+5y=2z+5
15.	5x + 4y = 19 10x + 8y = 12	16.	3x + 4y = z + 3
			x + 3y = 5z + 12

Name _____ Date _____ Class _____

y = 5

Ready To Go On? Quiz continued SECTION **4**B

17. You are starting a business renting bouncy houses for children's parties. You are deciding which equipment to purchase. Use x as the price of a bouncy slide, y as the price of a bouncy castle, and z as the price of a bouncy maze. What is the price of each type of equipment?

(2x + y + 3z = 8000)	slide = \$
$\begin{cases} 2x + y + 3z = 8000\\ x + 3y + 2z = 7250\\ 3x + 2y + z = 7250 \end{cases}$	castle = \$
	maze = \$

4-6 Row Operations and Augmented Matrices

Write the augmented matrix, and use row reduction to solve, if possible.

10	(2x + 3y = 1)	10	$\int 3x + y = 8$
10.	$\begin{cases} 2x + 3y = 1 \\ x = y + 3 \end{cases}$	19.	$\begin{cases} 3x + y = 8\\ 10x - y = 5 \end{cases}$

20.
$$\begin{cases} 6x - 2y = 16 \\ 3x = 8 + y \end{cases}$$
21.
$$\begin{cases} 4x + 2y - 5 = 0 \\ x - y = \frac{1}{2} \end{cases}$$

22. The system of equations represents the cost of bakery bouquets. Use a to represent the cost of cookie flowers, b the cost of cupcake flowers, and c the cost of chocolate flowers. Find the cost of each type of flower.

2a + b + 2c + 2.10 = 12.603a + 2b + c + 2.10 = 16.35

```
4a + 3b + 3c + 2.10 = 24.60
```

```
cookie flower = $
```

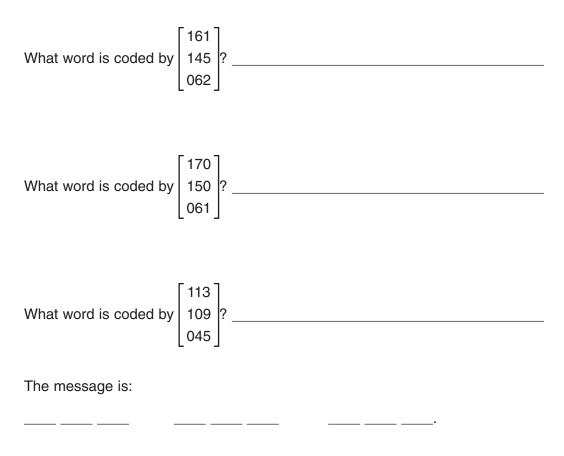
cupcake flower = \$_____

chocolate flower = \$

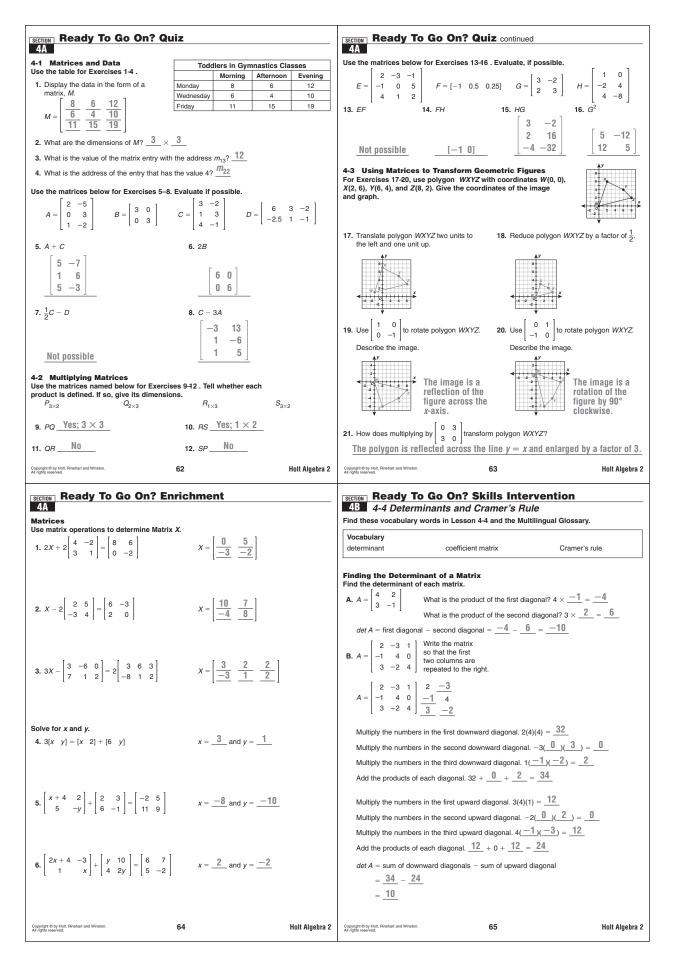
SECTION Ready To Go On? Enrichment

Inverse Matrices

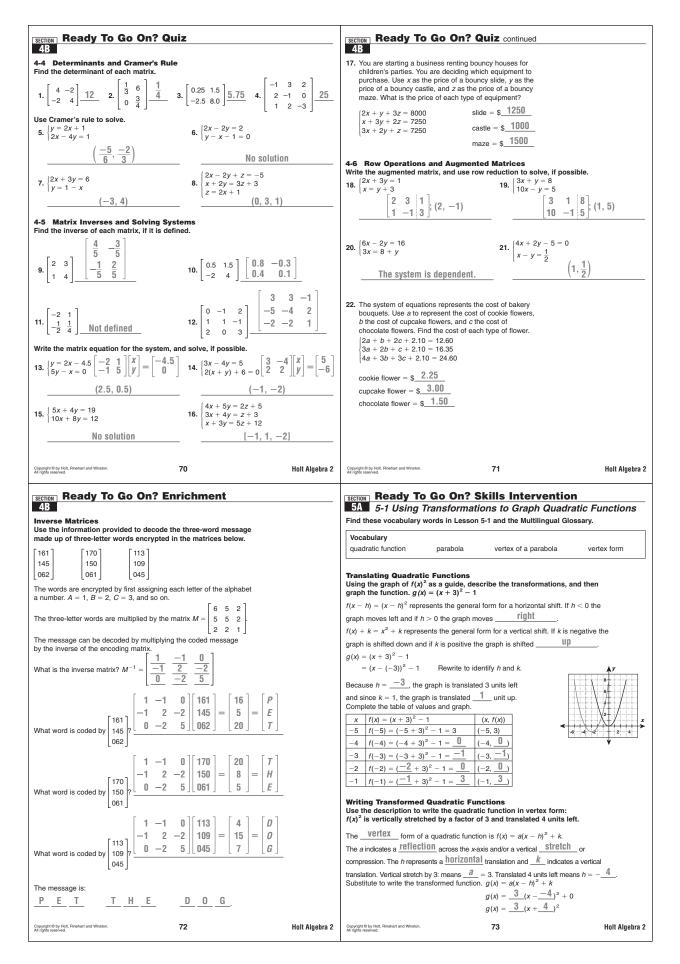
Use the information provided to decode the three-word message made up of three-letter words encrypted in the matrices below.


[10	61]	[170]	[113]
1	45	150	109
0	62	061	045

The words are encrypted by first assigning each letter of the alphabet a number. A = 1, B = 2, C = 3, and so on.


The three-letter words are multiplied by the matrix $M = \begin{bmatrix} 6 & 5 & 2 \\ 5 & 5 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.

The message can be decoded by multiplying the coded message by the inverse of the encoding matrix.


What is the inverse matrix? $M^{-1} = \begin{bmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$

Ready To Go On? Enrichment	SECTION Ready To Go On? Skills Intervention
Linear Systems in Two Dimensions	4A 4-1 Matrices and Data Find these vocabulary words in Lesson 4-1 and the Multilingual Glossary.
The formula for the distance, d, between two points (x_1, y_1) and (x_2, y_2) in a two-	Vocabulary
dimensional coordinate plane is $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. There is a similar formula for the distance, <i>d</i> , between two points in three-	matrix dimensions entry address scalar
dimensional space. If (x_1, y_1, z_1) and (x_2, y_2, z_2) are two points in three-	Pierlanian Pata in Matrix Fama
dimensional space, then the formula for the distance, <i>d</i> , between the points is $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} + (z_1 - z_2)^2.$ For example, the distance, <i>d</i> ,	Displaying Data in Matrix Form Plain Color With Borders Use the table of data to answer each question. 10 14 18
between (3, 5, -2) and (6, -2, 4) is:	15 20 26
$d = \sqrt{(3-6)^2 + (5-(-2))^2 + (-2-4)^2}$ $= \sqrt{(-3)^2 + (7)^2 + (-6)^2}$	25 30 34
$= \sqrt{(-3)^{2} + (7)^{2} + (-6)^{2}}$ = $\sqrt{9 + 49 + 36} = \sqrt{94}$ or about 9.7 units.	a. Display the data in the form of a matrix, <i>C</i> . C. What is the entry at <i>c</i> ₁₃ ? What does it represent?
Find the distance between each pair of points in three-dimensional space.	b. What are the dimensions of Matrix C? d. What is the address of the entry that
1. (1, 2, 3) and (4, 5, 6) $\stackrel{\sim}{=} 5.2$ 2. (0, 0, 0) and (2, 2, 2) $\stackrel{\sim}{=} 3.5$	has the value 26? a) Find the value in the first column of the first row of the table. Write this value in
3. (5, 2, 6) and (5, 2, -9) <u>15</u> 4. (3, 8, 1) and (3, -5, 1) <u>13</u>	the first column of the first row of the matrix. Do the same for the other values.
5. Look at Exercises 3 and 4. In each pair of points, how are the coordinates the same and how are they different? Can you relate that to the distance between	$C = \begin{bmatrix} 10 & \frac{14}{20} & \frac{18}{26} \\ 15 & \frac{20}{30} & \frac{26}{34} \end{bmatrix} \longrightarrow \text{ROWS}$
each pair of points? Two coordinates are the same for each point. To find the distance, find	L
the distance between the coordinates that are not the same.	b) How many rows are in the table? <u>3</u> How many columns? <u>3</u>
6. A box is 12 centimeters long, 8 centimeters deep, and	Matrix C is a <u>3</u> (rows) \times <u>3</u> (columns) matrix.
3 centimeters tall. Calculate the length of the longest rod that can fit in the box.	c) What does the 1 in c ₁₃ describe? <u>Row 1</u> What does the 3 in
a. Use (0, 0, 0) as the coordinates of one corner of the	c_{13} describe? Column 3 What is the value in c_{13} ? 18
box. What are the coordinates of the opposite corner of the box? (12, 8, 3) or (12, 3, 8)	 d) Find the value 26 in the matrix. What row is this value in? <u>2</u> What column is it in? <u>3</u> What is the address of 26? <u>C₃₂</u>
b. What is the length of the box from one corner to the	
opposite corner?	Finding Matrix Sums and Differences
a. 15 in. by 12 in. by 8 in. <u>≈20.8 in.</u> b. 20 cm by 10 cm by 2 cm <u>≈22.4 cm</u>	Find $A + B$. $A = \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 5 & -2 \\ 2 & 0 \end{bmatrix}$
c. a cube with edge 20 cm \approx 34.6 cm d. a cube with edge 24 in. \approx 41.6 in.	Add the values in <i>B</i> that correspond to the values in <i>A</i>
	Row Foodmin For A
	$\begin{bmatrix} 3+5 & -1+(-2) \\ 0+\underline{2} & 4+\underline{0} \end{bmatrix} = \begin{bmatrix} 8 & -3 \\ \underline{2} & \underline{4} \end{bmatrix}$
Copyright © by Holt, Binehant and Winston. 58 Holt Algebra 2	Copyright © by Holt, Rinehart and Winston. 59 Holt Algebra 2 All rights reserved.
SECTION Ready To Go On? Skills Intervention 4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary.	SECTION Ready To Go On? Skills Intervention 4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary.
4A 4-2 Multiplying Matrices	4A 4-3 Using Matrices to Transform Geometric Figures
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix rotation matrix using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates A(1, 1), B(-1, 2), and C(3, 4) two
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix rotation matrix Using Matrices to Translate a Figure
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>No</u>	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix translation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates A(1, 1), B(-1, 2), and C(3, 4) two units left and three units up. Find the coordinates of the vertices of
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and $\underline{1}$ Are they equal? No Is the matrix product defined? No No	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix rotation matrix using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph.
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>N0</u> Is the matrix product defined? <u>N0</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2),$ and $C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u>
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and $\underline{1}$ Are they equal? No Is the matrix product defined? No B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? $\underline{4}$ and 4 Are they equal? Yes	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix translation matrix Using Matrices to Translate a Figure Translate ΔABC with coordinates $A(1, 1), B(-1, 2), and C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the x-coordinates of the vertices of $\triangle ABC$? 1, -1, and 3 What are the y-coordinates of the vertices of $\triangle ABC$? 1, 2, and 4 Write the x-coordinates in the first row of the matrix and the y-coordinates in the second row.
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>N0</u> Is the matrix product defined? <u>N0</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the inner dimensions? <u>4</u>	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 \\ 1 & 2 & 4 \end{bmatrix} x$ -coordinates y-coordinates
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>NO</u> Is the matrix product defined? <u>NO</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the offered off RS? <u>2 × 1</u> Finding the Matrix Product Finding the Matrix Product COLUMN 1	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix translation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), and C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the x-coordinates of the vertices of $\triangle ABC$? 1, -1 , and 3 . What are the y-coordinates of the vertices of $\triangle ABC$? 1, 2 , and 4 . Write the x-coordinates in the first row of the matrix and the y-coordinates in the second row.
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>NO</u> Is the matrix product defined? <u>NO</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the offered off RS? <u>2 × 1</u> Finding the Matrix Product Finding the Matrix Product COLUMN 1	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix Translate $\triangle ABC$ with coordinates a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), and C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the x-coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the y-coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the x-coordinates in the first row of the matrix and the y-coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} + x$ -coordinates You are translating $\triangle ABC$? 2 units left and 3 units up. Therefore, each x-coordinate will move 2 units left and each y-coordinate 3 units up. Complete the translation matrix, T.
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>NO</u> Is the matrix product defined? <u>NO</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the offered off RS? <u>2 × 1</u> Finding the Matrix Product Finding the Matrix Product COLUMN 1	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix Vocabulary translation matrix reflection matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates A(1, 1), $B(-1, 2)$, and $C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the x-coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the y-coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the x-coordinates in the first row of the matrix and the y-coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} + x$ -coordinates You are translating $\triangle ABC$? 2 units left and 3 units up. Therefore, each x-coordinate will move 2 units left and each y-coordinate 3 units up. Your translating $\triangle ABC$? 2 units left and each y-coordinate 3 units up.
4A 4-2 Multiplying MatricesFind these vocabulary words in Lesson 4-2 and the Multilingual Glossary.Vocabulary matrix productsquare matrixmain diagonalmultiplicative identity matrixMultiplying Matrices Tell whether each product is defined. If so, give its dimensions.Multiplying MatricesNultiplying Matrices Tell whether each product is defined. If so, give its dimensions.Multiplying MatricesB. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and 1 Are they equal? NO Is the matrix product defined? NO B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? 4 and 4 Are they equal? Yes Is the matrix product defined? Yes What are the dimensions of RS? 2×1 Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} $	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} + x$ -coordinates You are translating $\triangle ABC$? 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinate 3 units up.
4A 4-2 Multiplying MatricesFind these vocabulary words in Lesson 4-2 and the Multilingual Glossary.Vocabulary matrix productsquare matrixmain diagonalmultiplicative identity matrixMultiplying Matrices Tell whether each product is defined. If so, give its dimensions.Multiplying MatricesNultiplying Matrices Tell whether each product is defined. If so, give its dimensions.Multiplying MatricesB. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and 1 Are they equal? NO Is the matrix product defined? NO B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? 4 and 4 Are they equal? Yes Is the matrix product defined? Yes What are the dimensions of RS? 2×1 Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} $	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 2 & 4 \\ 1 & 2 & 4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates \leftarrow <i>y</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates 3 \leftarrow <i>y</i> -coordinates \top <i>y</i> = $\begin{bmatrix} -2 & -2 & -2 \\ 3 & 3 & -3 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates \leftarrow <i>y</i> -coordinates Add the matrices together to find the vertices of the translated image.
4A 4-2 Multiplying Matrices Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>NO</u> Is the matrix product defined? <u>NO</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the offered off RS? <u>2 × 1</u> Finding the Matrix Product Finding the Matrix Product COLUMN 1	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>4</u> Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates \leftarrow <i>y</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates 3 \leftarrow <i>y</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 + 3 & -2 & 4 + 3 \end{bmatrix}$
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>No</u> Is the matrix product defined? <u>No</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of RS ? <u>2 × 1</u> Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & -\frac{5}{35} \end{bmatrix} $ ROW 1 What are the dimensions of A and B ? A : <u>2</u> × <u>3</u> B: <u>3</u> × <u>2</u> What are the dimensions of the product AB ? <u>2</u> × <u>2</u>	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 2 & -4 \\ 1 & 2 & -4 & -1 \end{bmatrix} \leftarrow x$ -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates 3 \Rightarrow <i>y</i> -coordinates Translate ABC 2 units left and so units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates $T = \begin{bmatrix} -2 & -2 & -2 \\ 3 & 3 & -3 & -2 \end{bmatrix} \leftarrow x$ -coordinates Add the matrices together to find the vertices of the translated image.
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>No</u> Is the matrix product defined? <u>No</u> B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of RS ? <u>2 × 1</u> Finding the Matrix Product Find the product <i>AB</i> . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} $ FOW 1 What are the dimensions of <i>A</i> and <i>B</i> ? <i>A</i> : <u>2</u> × <u>3</u> <i>B</i> : <u>3</u> × <u>2</u> What are the dimensions of the product AB ? <u>2</u> × <u>2</u> Multiply row 1 of <i>A</i> by column 1 of <i>B</i> . 2(4) + 0(-3) + -1(2) = <u>6</u>	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>-1</u> , and <u>3</u> What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, <u>2</u> , and <u>4</u> Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} $ $\leftarrow x$ -coordinates $\leftarrow y$ -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates = y-coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 + 3 & -2 & 4 + 3 \end{bmatrix}$
4A 4-2 Multiplying MatricesFind these vocabulary words in Lesson 4-2 and the Multilingual Glossary.Vocabulary matrix productsquare matrix square matrixmain diagonalmultiplicative identity matrixMultiplying Matrices Tell whether each product is defined. If so, give its dimensions.Multiplying Matrices Tell whether each product is defined. If so, give its dimensions.A. $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and 1 Are they equal? NO Is the matrix product defined? NO B. $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? 4 and 4 Are they equal? Yes Is the matrix product defined? Yes What are the dimensions of RS ? 2×1 Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} \bullet$ ROW 1What are the dimensions of A and B? A: 2×3 Multiply row 1 of A by column 1 of B. $2(4) + 0(-3) + -1(2) = 6$ Place the answer in row 1, column 1 of the product matrix.Multiply row 1 of A by column 2 of B. $2 (0) + 0(1) + -1(5) = -5$ Place the answer in row 1, column 2 of the product matrix.	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & -4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates \leftarrow <i>y</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each \times -coordinate will move 2 units left and each <i>y</i> -coordinate 3 units up. Complete the translation matrix, <i>T</i> . $T = \begin{bmatrix} -2 & -2 & -2 \\ 3 & -3 & -2 \\ 1 + 3 & -2 + 3 & -2 \\ -2 + 3 & -2 & -4 + 3 \end{bmatrix} $ $= \begin{bmatrix} -1 & -3 & 1 \\ 4 & -5 & 7 \end{bmatrix}$
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A . $P_{3\times2}$ and $Q_{1\times4}$; PQ What are the inner dimensions? 2 and <u>1</u> . Are they equal? <u>N0</u> Is the matrix product defined? <u>N0</u> B . $R_{2\times4}$ and $S_{4\times1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of $RS? 2 \times 1$ Finding the Matrix Product Find the product <i>AB</i> . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} + ROW 1$ What are the dimensions of <i>A</i> and <i>B</i> ? A: <u>2</u> × <u>3</u> B: <u>3</u> × <u>2</u> What are the dimensions of the product $AB? 2 \times 2$ Multiply row 1 of <i>A</i> by column 1 of <i>B</i> . 2(4) + 0(-3) + -1(2) = <u>6</u> Place the answer in row 1, column 2 of the product matrix. Multiply row 2 of <i>A</i> by column 1 of <i>B</i> . 2 of <i>B</i> . <u>3</u> (4) + <u>5</u> (-3) + <u>6</u> (2) = <u>9</u>	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and 3 . What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, 2 , and 4 . Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates \leftarrow <i>y</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each \times -coordinate will move 2 units left and each <i>y</i> -coordinate 3 units up. Complete the translation matrix, <i>T</i> . $T = \begin{bmatrix} -2 & -2 & -2 \\ 3 & 3 & -3 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 + 3 & -2 \\ -2 + 3 & -2 \end{bmatrix}$ What are the coordinates of the vertices of the translated triangle?
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A . $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> . Are they equal? <u>N0</u> Is the matrix product defined? <u>N0</u> B . $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of $RS? 2 \times 1$ Finding the Matrix Product Find the product <i>AB</i> . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} + ROW 1$ What are the dimensions of <i>A</i> and <i>B</i> ? A: <u>2</u> × <u>3</u> B: <u>3</u> × <u>2</u> What are the dimensions of the product $AB? 2 \times 2$ Multiply row 1 of <i>A</i> by column 1 of <i>B</i> . 2(4) + 0(-3) + -1(2) = <u>6</u> Place the answer in row 1, column 2 of the product matrix. Multiply row 2 of <i>A</i> by column 1 of <i>B</i> . 2 of <i>B</i> . <u>3</u> (4) + <u>5</u> (-3) + <u>6</u> (2) = <u>9</u> Place the answer in row 2, column 1 of the product matrix.	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & -2 & -4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinate 3 units up. Complete the translation matrix, <i>T</i> . $T = \begin{bmatrix} -2 & -2 & -2 \\ 3 & -3 & -3 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -5 & 7 \end{bmatrix}$ What are the coordinates of the vertices of the translated triangle? A' (-1, 4), B' (-3, 5), and C' (-1, 7).
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A . $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>No</u> Is the matrix product defined? <u>No</u> B . $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of RS ? <u>2 × 1</u> Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} \bullet ROW 1$ What are the dimensions of A and B ? $A: \underline{2} \times \underline{3}$ $B: \underline{3} \times \underline{2}$ What are the dimensions of the product $AB? \underline{2} \times \underline{2} \star \underline{3}$ Multiply row 1 of A by column 1 of B . $2(4) + 0(-3) + -1(2) = \underline{6}$. Place the answer in row 1, column 2 of $B. \underline{2} = (0) + 0(\underline{1}) + -1(5) = -5$. Place the answer in row 1, column 2 of the product matrix. Multiply row 2 of A by column 1 of $B \ge 2$ of $B. \underline{3} = (4) + \underline{5} = (-3) + \underline{6} = (2) = 9$. Place the answer in row 2, column 1 of the product matrix. Multiply row 2 of A by column 1 of the product matrix. Multiply row 2 of A by column 1 of $B \ge 2$ of $B. \underline{3} = (4) + \underline{5} = (-3) + \underline{6} = (5) = -35$.	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & -2 & -4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and a units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -5 & 7 \\ \end{bmatrix}$ What are the coordinates of the vertices of the translated triangle? A' (-1, 4), B' (-3, -5), and C' (-1, -7).
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A . $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> . Are they equal? <u>N0</u> Is the matrix product defined? <u>N0</u> B . $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of $RS? 2 \times 1$ Finding the Matrix Product Find the product <i>AB</i> . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} + ROW 1$ What are the dimensions of <i>A</i> and <i>B</i> ? A: <u>2</u> × <u>3</u> B: <u>3</u> × <u>2</u> What are the dimensions of the product $AB? 2 \times 2$ Multiply row 1 of <i>A</i> by column 1 of <i>B</i> . 2(4) + 0(-3) + -1(2) = <u>6</u> Place the answer in row 1, column 2 of the product matrix. Multiply row 2 of <i>A</i> by column 1 of <i>B</i> . 2 of <i>B</i> . <u>3</u> (4) + <u>5</u> (-3) + <u>6</u> (2) = <u>9</u> Place the answer in row 2, column 1 of the product matrix.	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & -2 & -4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and a units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -5 & 7 \\ \end{bmatrix}$ What are the coordinates of the vertices of the translated triangle? A' (-1, 4), B' (-3, -5), and C' (-1, -7).
4A 4-2 <i>Multiplying Matrices</i> Find these vocabulary words in Lesson 4-2 and the Multilingual Glossary. Vocabulary matrix product square matrix main diagonal multiplicative identity matrix Multiplying Matrices Tell whether each product is defined. If so, give its dimensions. A . $P_{3\times 2}$ and $Q_{1\times 4}$; PQ What are the inner dimensions? 2 and <u>1</u> Are they equal? <u>No</u> Is the matrix product defined? <u>No</u> B . $R_{2\times 4}$ and $S_{4\times 1}$; RS What are the inner dimensions? <u>4</u> and 4 Are they equal? <u>Yes</u> Is the matrix product defined? <u>Yes</u> What are the dimensions of RS ? <u>2 × 1</u> Finding the Matrix Product Find the product AB . $A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 5 & 6 \end{bmatrix} B = \begin{bmatrix} 4 & 0 \\ -3 & 1 \\ 2 & 5 \end{bmatrix} AB = \begin{bmatrix} \frac{6}{9} & \frac{-5}{35} \end{bmatrix} \bullet ROW 1$ What are the dimensions of A and B ? $A: \underline{2} \times \underline{3}$ $B: \underline{3} \times \underline{2}$ What are the dimensions of the product $AB? \underline{2} \times \underline{2} \star \underline{3}$ Multiply row 1 of A by column 1 of B . $2(4) + 0(-3) + -1(2) = \underline{6}$. Place the answer in row 1, column 2 of $B. \underline{2} = (0) + 0(\underline{1}) + -1(5) = -5$. Place the answer in row 1, column 2 of the product matrix. Multiply row 2 of A by column 1 of $B \ge 2$ of $B. \underline{3} = (4) + \underline{5} = (-3) + \underline{6} = (2) = 9$. Place the answer in row 2, column 1 of the product matrix. Multiply row 2 of A by column 1 of the product matrix. Multiply row 2 of A by column 1 of $B \ge 2$ of $B. \underline{3} = (4) + \underline{5} = (-3) + \underline{6} = (5) = -35$.	4A 4-3 Using Matrices to Transform Geometric Figures Find these vocabulary words in Lesson 4-3 and the Multilingual Glossary. Vocabulary translation matrix reflection matrix rotation matrix Using Matrices to Translate a Figure Translate $\triangle ABC$ with coordinates $A(1, 1), B(-1, 2), \text{ and } C(3, 4)$ two units left and three units up. Find the coordinates of the vertices of the image, and graph. What are the <i>x</i> -coordinates of the vertices of $\triangle ABC$? 1, -1 , and -3 What are the <i>y</i> -coordinates of the vertices of $\triangle ABC$? 1, -2 , and -4 Write the <i>x</i> -coordinates in the first row of the matrix and the <i>y</i> -coordinates in the second row. $P = \begin{bmatrix} 1 & -1 & 3 \\ 1 & -2 & -4 \end{bmatrix} $ \leftarrow <i>x</i> -coordinates You are translating $\triangle ABC$ 2 units left and 3 units up. Therefore, each <i>x</i> -coordinate will move 2 units left and a units up. Therefore, each <i>x</i> -coordinate will move 2 units left and each <i>y</i> -coordinates Add the matrices together to find the vertices of the translated image. $P + T = \begin{bmatrix} 1 + (-2) & -1 + -2 & 3 + -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -2 & -3 & -2 \\ 1 + 3 & -5 & 7 \\ \end{bmatrix}$ What are the coordinates of the vertices of the translated triangle? A' (-1, 4), B' (-3, -5), and C' (-1, -7).

SECTION Ready To Go On? Skills Intervention	SECTION Ready To Go On? Problem Solving Intervention
4B 4-5 Matrix Inverses and Solving Systems Find these vocabulary words in Lesson 4-5 and the Multilingual Glossary.	4.5 <i>A-5 Matrix Inverses and Solving Systems</i> Matrix equations, <i>AX</i> = <i>B</i> can be used to solve systems of equations; <i>A</i> is the
Vocabulary multiplicative inverse matrix matrix equation variable matrix constant matrix	coefficient matrix, <i>B</i> is the constant matrix and <i>X</i> is the variable matrix. You are writing a proposal for buying and selling office equipment as a system of equations. Let <i>x</i> = the price of a laptop, <i>y</i> = the price of a $\begin{pmatrix} -y + 2z = 470 \\ x + y - z = 430 \end{pmatrix}$
Finding the Inverse of a 2 \times 2 Matrix	printer, and $z =$ the price of a fax machine. What is the price of each type of equipment? (2 x + 3 z = 2410
Find the inverse of the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ if it is defined.	Understand the Problem
Find the determinant. (1)($\underline{4}$) - 2($\underline{3}$) = $\underline{-2}$	1. Which equation represents selling a printer and buying two fax machines?
Does the matrix have an inverse? $\frac{Ves}{2}$ $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	Equation 1
The inverse $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.	2. Which equation represents buying a laptop and a printer, and selling a fax machine? Equation 2
Substitute values. $A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$	Make a Plan
Multiply the fraction by each value in the matrix. $A^{-1} = \begin{bmatrix} -\frac{1}{2}(4) & -\frac{1}{2} \\ -\frac{1}{2}(-2) & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -2 & \frac{3}{2} \\ -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{bmatrix}$	3. Write a matrix 4. Write a matrix 5. Write a matrix to represent the to represent the to represent the coefficients of variables of constants of the system. the system. the system.
Solving Systems Using Inverse Matrices Write and actual the matrix equation for the autom $[x + 3y = 9]$	
Write and solve the matrix equation for the system $1 + 0 + 1 = -10$ Write the coefficients in the first matrix.Write the variables in a second matrix.Write the constants in a third matrix.	$A = \begin{bmatrix} 0 & -1 & \boxed{2} \\ 1 & \boxed{1} & -1 \\ \boxed{2} & 0 & \boxed{3} \end{bmatrix} \qquad X = \begin{bmatrix} \boxed{\chi} \\ y \\ \boxed{\mathbb{Z}} \end{bmatrix} \qquad B = \begin{bmatrix} 470 \\ \boxed{430} \\ \boxed{2140} \end{bmatrix}$
$\begin{bmatrix} A & X & B \\ \hline 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 9 \\ \hline -10 \end{bmatrix}$	Solve 6. Write the matrix equation for the system as $AX = B$. $\begin{bmatrix} 0 & -1 & 2 \\ 1 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 470 \\ 430 \\ 2140 \end{bmatrix}$
ि । । । । । । । । । । । । । । । । । । ।	
$\det A = \underbrace{1}_{(-1)} - 2\underbrace{(3)}_{(3)} = \underbrace{-7}_{(-7)} \qquad A^{-1} = \underbrace{1}_{(-7)} \begin{bmatrix} -1 & \underbrace{-3}_{(-2)} \\ -2 & \underbrace{1}_{(-7)} \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} \end{bmatrix}$	7. Use the inverse function on your $X = A^{-1}B = \begin{bmatrix} 3 & 3 & -1 \\ -5 & -4 & 2 \\ \hline -2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 470 \\ 430 \\ 210 \\ \hline 2140 \end{bmatrix} = \begin{bmatrix} 560 \\ 210 \\ \hline 340 \end{bmatrix}$
	8. How much is a laptop? <u>\$560</u> a printer? <u>\$210</u> a fax machine? <u>\$340</u>
Solve. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{-1}{7} \end{bmatrix} \begin{bmatrix} 9 \\ -10 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ Substitute the inverse and the constant matrices.	Look Back
$\begin{bmatrix} y \end{bmatrix} \begin{bmatrix} 2 \\ 7 \end{bmatrix} \begin{bmatrix} -1 \\ 7 \end{bmatrix} \begin{bmatrix} -10 \\ 7 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ matrices.	9. Substitute the values you calculated into one of the equations in the system. Try
What is the solution? (<u>-3</u> , <u>4</u>)	x + y - z = 430. (560) + (210) - (340) = 430 Do you yield the correct result? Yes
Copyright 0 by Holt, Rineharl and Winston. 66 Holt Algebra 2 All rights reserved.	Copyright 0 by Holt, Rinehant and Winston. 67 Holt Algebra 2 All rights reserved.
SECTION Ready To Go On? Skills Intervention	
	SECTION Ready To Go On? Problem Solving Intervention
4B 4-6 Row Operations and Augmented Matrices	4B 4-6 Row Operations and Augmented Matrices
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use <i>a</i> to represent the cost of one box of pencils, <i>b</i> to represent the cost of one box of paints, and <i>c</i> to represent the cost of one bundle of brushes. Find the cost of each type of supply. 2a + 2b + c + 2.20 = 10.65 $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix and poly $[6x + y = 15]$	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of paints, and c to represent the cost of one box
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients y-coefficients Control of the second secon	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of panits, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ Understand the Problem $2a + 2b + c + 2.20 = 12.63$ 1. What are the three types of art supplies?pencils, paints, brushes 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{cases} 6x + y = 15\\ 3x + 2y = 12 \end{cases}$ *coefficients *coefficients • • • • • • • • • • • • • • • •	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of panits, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply.
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3 2 12	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of panits, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ Understand the Problem $2a + 2b + c + 2.20 = 12.63$ 1. What are the three types of art supplies?pencils, paints, brushes 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients constants $\begin{pmatrix} 6 & 1 & 15 \\ 3 & 2 & 12 \end{bmatrix}$ Write the augmented matrix. Multiply every value in row 2 by 2. $\begin{bmatrix} 6 & 1 & 15 \\ 6 & 4 & 124 \end{bmatrix}$	 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of brushes. Find the cost of each type of supply. Understand the Problem What are the three types of art supplies?PENCILS, paints, brushes Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 2 The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.20
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ $3x + 2y = 12$ *coefficients constants 6 1 15 $3 - 2$ 12 Write the augmented matrix. Multiply every value in row 2 by 2. 6 1 6 1 15 Subtract row 1 from row 2. 6 6 1	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem 1. What are the three types of art supplies?Pencils, paints, brushes 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Pencils are placed is included in each equation. What is the cost of each basket?\$2.20 4. What information are you trying to find?The cost of each type of supply
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients constants $\begin{pmatrix} 6 & 1 & 15 \\ 3 & 2 & 12 \end{bmatrix}$ Write the augmented matrix. Multiply every value in row 2 by 2. $\begin{bmatrix} 6 & 1 & 15 \\ 6 & 4 & 124 \end{bmatrix}$	 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one box of brushes. Find the cost of each type of supply. Understand the Problem What are the three types of art supplies?PENCILS, paints, brushes Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 2 The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.20
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients *coefficients G 1 15 Write the augmented matrix. Write the augmented matrix. Multiply every value in row 2 by 2. $\begin{bmatrix} 6 & 1 & 15\\ 6 & 4 & 124 \end{bmatrix}$ Subtract row 1 from row 2. $6 - 6 = [0]$ $4 - 1 = 3$ $\begin{bmatrix} 6 & 1 & 15\\ 0 & 3 & 9 \end{bmatrix}$ Write the result in row 2.	 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem 1. What are the three types of art supplies? <u>pencils, paints, and 2 bundles of brushes?</u> 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes? <u>Equation 2</u> 3. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket? <u>\$2.20</u> 4. What information are you trying to find? <u>The cost of each type of supply</u> Make a Plan 5. Rewrite the equations with the constants on one side. 2a + 2b + c + 2.20 = 10.65 3a + 2b + 2c + 2.20 = 16.11
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 9 Write the augmented in row 2 by 2. 6 10 1 15 9 Write the result in row 2. 6 11 15 9 12 15 9 13 9	4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply.
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ $3x + 2y = 12$ *coefficients *coefficients 6 1 15 3 2 12 *coefficients *coefficients 6 1 15 Subtract row 1 from row 2 by 2. 6 1 6 1 15 Write the result in row 2. 6 6 6 1 15 Write the result in row 2. 6 1 0 3 9 Multiply row 1 by 3. $\begin{bmatrix} 18 & 3 & [45] \\ 0 & 3 & 9 \end{bmatrix}$ Subtract row 2 from row 1. 18 -3 -9 36	 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem Whit are the three types of art supplies?PEncils, paints, and 2 bundles of brushes?Equation 2 The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.20 What information are you trying to find?The cost of each type of supply Make a Plan Rewrite the equations with the constants on one side. 2a + 2b + c + 2.20 = 10.65 3a + 2b + 2c + 2.20 = 16.11
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3 2 12 *coefficients constants 6 1 15 Subtract row 1 from row 2. 6 1 15 0 3 9 Write the result in row 2. [18] 3 [45] 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Write the result in row 1. <th>4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply.$2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$Understand the Problem1. What are the three types of art supplies?PEncils, paints, brushes2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 23. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.204. What information are you trying to find?</th>	4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ Understand the Problem1. What are the three types of art supplies?PEncils, paints, brushes2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 23. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.204. What information are you trying to find?
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3 2 12 *coefficients constants 6 1 15 Subtract row 1 from row 2. 6 1 15 0 3 9 Write the result in row 2. [18] 3 [45] 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Subtract row 2 from row 1. 18 0 3 9 3 Write the result in row 1. <th> 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem Whit are the three types of art supplies?PEncils, paints, and 2 bundles of brushes?Equation 2 The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.20 What information are you trying to find?The cost of each type of supply Make a Plan Rewrite the equations with the constants on one side. 2a + 2b + c + 2.20 = 10.65 3a + 2b + 2c + 2.20 = 16.11</th>	 4B 4-6 Row Operations and Augmented Matrices The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of pencils, b to represent the cost of one box of pencils, b to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem Whit are the three types of art supplies?PEncils, paints, and 2 bundles of brushes?Equation 2 The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.20 What information are you trying to find?The cost of each type of supply Make a Plan Rewrite the equations with the constants on one side. 2a + 2b + c + 2.20 = 10.65 3a + 2b + 2c + 2.20 = 16.11
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve: $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 Write the augmented matrix. Multiply every value in row 2. 6 1 15 5 Subtract row 1 from row 2. 6 6 1 $150 3 9 Multiply row 1 by 3. \begin{bmatrix} 18 & 3 & 45 \\ 0 & 3 & 9 \end{bmatrix} 3 9 3 9 Subtract row 2 from row 1. \begin{bmatrix} 1 & 0 & 25 \\ 0 & 3 & 9 \end{bmatrix} 3 9 3 Divide row 1 by 18 and row 2 by 3. \begin{bmatrix} 1 & 0 & 22 \\ 0 & 1 & 3 \end{bmatrix} 3 3 9$	4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $\begin{vmatrix} 2a + 2b + c + 2.20 = 10.65 \\ 3a + 2b + 2c + 2.20 = 12.63 \\ 4a + 3b + 2c + 2.20 = 16.11 \end{vmatrix}$ Understand the Problem1. What are the three types of art supplies?
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation Solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3 - 2 Write the augmented matrix, and solve. $6x + y = 153x + 2y = 12$ *coefficients constants 6 1 15 3 - 2 Write the augmented matrix. Multiply every value in row 2 by 2. 6 1 15 6 14 24 15 = 9 Write the result in row 2. 6 1 15 0 - 3 9 15 9 9 35 Multiply row 1 by 3. $\begin{bmatrix} 18 & 3 & 45 \\ 0 & 3 & 9 \end{bmatrix}$ 3 = 0, $45 - 9 = 35$ 9 36 Write the result in row 1. $\begin{bmatrix} 18 & 0 & 35 \\ 0 & 3 & 9 \end{bmatrix}$ 35 9 35 9 35 Divide row 1 by 18 and row 2 by 3. $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ 7 9 35 1 0 22 1 35 9 35 1 35 9 <td>4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply.$2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$Understand the Problem1. What are the three types of art supplies?Pencils, paints, brushes2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 23. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.204. What information are you trying to find?The Cost of each type of supplyMake a Plan5. Rewrite the equations with the constants on one side. $2a + 2b + c = 8.45$6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & \\ 3 & 2 & 2 & \\ 2 & 2 & 1 & \\ 3 & 2 & 2 & \\ 3 & 2 & \\ 4 & \\ 3 & 2 & \\ 3 & 2 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\$</td>	4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ Understand the Problem1. What are the three types of art supplies?Pencils, paints, brushes2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes?Equation 23. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket?\$2.204. What information are you trying to find?The Cost of each type of supplyMake a Plan5. Rewrite the equations with the constants on one side. $2a + 2b + c = 8.45$ 6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & \\ 3 & 2 & 2 & \\ 2 & 2 & 1 & \\ 3 & 2 & 2 & \\ 3 & 2 & 2 & \\ 3 & 2 & 2 & \\ 3 & 2 & 2 & \\ 3 & 2 & \\ 4 & \\ 3 & 2 & \\ 3 & 2 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 3 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\ 4 & \\ 3 & 2 & \\ 3 & \\$
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve: $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 Write the augmented matrix. Multiply every value in row 2. 6 1 15 5 Subtract row 1 from row 2. 6 6 1 $150 3 9 Multiply row 1 by 3. \begin{bmatrix} 18 & 3 & 45 \\ 0 & 3 & 9 \end{bmatrix} 3 9 3 9 Subtract row 2 from row 1. \begin{bmatrix} 1 & 0 & 25 \\ 0 & 3 & 9 \end{bmatrix} 3 9 3 Divide row 1 by 18 and row 2 by 3. \begin{bmatrix} 1 & 0 & 22 \\ 0 & 1 & 3 \end{bmatrix} 3 3 9$	4B4-6 <i>Row Operations and Augmented Matrices</i> The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of panits, and c to represent the cost of one box of panits, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ Understand the Problem 1. What are the three types of art supplies? <u>pencils, paints, brushes</u> 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes? <u>Equation 2</u> 3. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket? <u>\$2.20</u> 4. What information are you trying to find? <u>The cost of each type of supply</u> Make a Plan5. Rewrite the equations with the constants on one side. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ $-2.202.20$ $-2.20 - 2.20$ 2.2 -2.20 $-2.202.20$ 2.2 -2
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation row reduction reduced row-echelon form Solving Systems with an Augmented Matrix Write the augmented matrix, and solve: $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 *coefficients constants 6 1 15 3x + 2y = 12 Subtract row 1 from row 2. 6 1 15 0 = 3 9 Write the result in row 2. 1 18 0 = 3 9 9 Subtract row 2 from row 1. 18 0 = 3 9 3 9 Write the result in row 1. 18 0 = 3 9 3 Divide row 1 by 18 and row 2 by 3. 1 0 0 = 1 1 3 <	4B4-6 Row Operations and Augmented MatricesThe system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ $4a + 3b + 2c + 2.20 = 16.11$ 1. What are the three types of art supplies?
4B 4-6 Row Operations and Augmented Matrices Find these vocabulary words in Lesson 4-6 and the Multilingual Glossary. Vocabulary augmented matrix row operation solving Systems with an Augmented Matrix Write the augmented matrix, and solve. $6x + y = 15$ 3x + 2y = 12 *coefficients constants 6 1 15 3 + 2y = 12 *coefficients constants 6 1 15 3 + 2y = 12 *coefficients constants 6 1 15 3 + 2y = 12 *coefficients constants 6 1 15 3 + 2y = 12 *coefficients constants 6 1 15 3 + 2y = 12 Write the augmented matrix. Multiply every value in row 2. 6 1 15 3 + 9 Subtract row 1 from row 2. 6 1 15 0 - 3 + 9 24 9 - 3 = 0, 45 - 9 = 36 Write the result in row 1. 18 0 - 3 + 9 3- 3 = 0, 45 - 9 = 36 Write the result in row 1. 10 0 - 1 + 3 20 3 + 9 3 Divide row 1 by 18 and row 2 by 3. 1 0 1 + 0 + 2 20 0 + 1 + 3	4B4-6 <i>Row Operations and Augmented Matrices</i> The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. Understand the Problem $2 + 2b + 2 + 220 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ 1. What are the three types of art supplies? <u>pencils, paints, brushes</u> 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes? <u>Equation 2</u> 3. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket? <u>\$2.20</u> 4. What information are you trying to find? <u>The cost of each type of supply</u> Make a Plan5. Rewrite the equations with the constants on one side. $2a + 2b + c = 8.45$ $3a + 2b + 2c = 10.43$ $4a + 3b + 2c = 13.91$ 6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & 8.45 \\ 3 & 2 & 2 & 1 & 10.43 \\ 4 & 3 & 2 & 13.91 \end{bmatrix}$ 6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & 8.45 \\ 3 & 2 & 2 & 1 & 10.43 \\ 4 & 3 & 2 & 13.91 \end{bmatrix}$ Now down the list to B:rref. Find the reduced row-echelon form of the augmented matrix.Press (1.49) one box of paints? (2.99) one bundle of brushes? (2.99) one bundle of brushes? (2.99) one bundle of brushes? (2.99) one bundle of brushes? (2.99)
4B4-6 Row Operations and Augmented MatricesFind these vocabulary words in Lesson 4-6 and the Multilingual Glossary.Vocabulary augmented matrixaugmented matrixrow operationsolving Systems with an Augmented MatrixWrite the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients $\begin{bmatrix} 6 & 1 & 15\\ 3 & 2 & 12 \end{bmatrix}$ Write the augmented matrix, and solve. $\begin{bmatrix} 6x + y = 15\\ 3x + 2y = 12 \end{bmatrix}$ *coefficients $\begin{bmatrix} 6 & 1 & 15\\ 3 & 2 & 12 \end{bmatrix}$ Write the augmented matrix.Multiply every value in row 2 by 2. $\begin{bmatrix} 6 & 1 & 15\\ 0 & 3 & 9 \end{bmatrix}$ Subtract row 1 from row 2. $\begin{bmatrix} 6 & 1 & 15\\ 0 & 3 & 9 \end{bmatrix}$ Multiply row 1 by 3. $\begin{bmatrix} 18 & 3 & 45\\ 0 & 3 & 9 \end{bmatrix}$ Subtract row 2 from row 1. $\begin{bmatrix} 19 & 0 & 36\\ 0 & 3 & 9 \end{bmatrix}$ Subtract row 2 from row 1. $\begin{bmatrix} 19 & 0 & 36\\ 0 & 3 & 9 \end{bmatrix}$ Divide row 1 by 18 and row 2 by 3. $\begin{bmatrix} 1 & 0 & 26\\ 0 & 1 & 3 \end{bmatrix}$ The solution is $x = \frac{2}{2}$ and $y = \frac{3}{2}$.Check your answer by substituting the values of x and y into each of the original equations in the system. $6x + y = 15$ $3x + 2y = 12$ $6(\frac{2}{2}) + (\frac{3}{2}) = 15$ $3(\frac{2}{2}) + 2(\frac{3}{2}) = 12$	4B4-6 <i>Row Operations and Augmented Matrices</i> The system of equations represents the costs of three baskets of art supplies. Use a to represent the cost of one box of paints, and c to represent the cost of one box of paints, and c to represent the cost of one bundle of brushes. Find the cost of each type of supply. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c + 2.20 = 12.63$ $4a + 3b + 2c + 2.20 = 16.11$ Understand the Problem 1. What are the three types of art supplies? <u>pencils, paints, brushes</u> 2. Which equation represents 3 boxes of pencils, 2 boxes of paints, and 2 bundles of brushes? <u>Equation 2</u> 3. The cost of the basket into which the supplies are placed is included in each equation. What is the cost of each basket? <u>\$2.20</u> 4. What information are you trying to find? <u>The cost of each type of supply</u> Make a Plan5. Rewrite the equations with the constants on one side. $2a + 2b + c + 2.20 = 10.65$ $3a + 2b + 2c = 10.43$ $4a + 3b + 2c = 13.91$ 6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & 8.45 \\ 3 & 2 & 2 & 1 & 10.43 \\ 4 & 3 & 2 & 13.91 \end{bmatrix}$ 6. Use the equations to write an augmented matrix. $A^{-1} = \begin{bmatrix} 2 & 2 & 1 & 8.45 \\ 3 & 2 & 2 & 1 & 10.43 \\ 4 & 3 & 2 & 13.91 \end{bmatrix}$ Solve7. Enter the 3×4 augmented matrix into your calculator as A.8. Press [] 10 your calculator. The select [] Move down the list to B:rref. Find the reduced row-echelon form of the augmented matrix.9. How much does one box of pencils cost? \$0.49 one box of paints? \$2.99 one bundle of brushes? \$1.49Lock Back10. Substitute the values for

