Chapter Test

Form A

Select the best answer.

1. The table shows the number of books two students read each month. Which matrix displays the data in the table?

Number of Books Read per Month						
Student January February						
Sarah	3	0				
Nicole	1	8				

- $\mathbf{A} \begin{bmatrix} 3 & 0 \\ 1 & 8 \end{bmatrix}$
- **B**[3108]
- $\mathbf{c} \begin{bmatrix} 3 \\ 1 \\ 0 \\ 8 \end{bmatrix}$
- $\mathbf{D} \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$
- **2.** If $A = \begin{bmatrix} 5 & 3 & 2 \\ 6 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 & 3 \\ 9 & 6 & 2 \end{bmatrix}$, evaluate
 - A + B.
 - $\mathbf{A} \begin{bmatrix} 6 & 4 & 3 \\ 7 & 2 & 4 \end{bmatrix}$
 - **B** $\begin{bmatrix} 6 & 7 & 5 \\ 15 & 7 & 7 \end{bmatrix}$
- **3.** If $C = \begin{bmatrix} 2 & 5 \\ 5 & 0 \\ 1 & 7 \end{bmatrix}$ and $D = \begin{bmatrix} 9 & 2 \\ 3 & 4 \\ 6 & 0 \end{bmatrix}$, evaluate
 - C + 2D.
 - $\mathbf{A} \begin{bmatrix} 11 & 7 \\ 8 & 4 \\ 7 & 7 \end{bmatrix}$
- $\mathbf{C} \begin{bmatrix} 18 & 10 \\ 15 & 0 \\ 6 & 0 \end{bmatrix}$
- $\mathbf{B} \begin{bmatrix} 18 & 4 \\ 8 & 4 \\ 12 & 0 \end{bmatrix}$
- **D** 20 9 11 8 13 7

- **4.** For $S_{2\times 4}$ and $T_{4\times 3}$, what are the dimensions of ST?
 - A 2×3
 - **B** 4 × 4
- **5.** If $P = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$ and $Q = \begin{bmatrix} 4 & 0 \\ 2 & 3 \end{bmatrix}$, evaluate PQ.
 - $\mathbf{A} \begin{bmatrix} 7 & 1 \\ 4 & 2 \end{bmatrix}$
 - $\mathbf{B} \begin{bmatrix} 12 & 4 \\ 12 & -1 \end{bmatrix}$
 - $\mathbf{C} \begin{bmatrix} 12 & 0 \\ 4 & -3 \end{bmatrix}$
 - $\mathbf{D} \begin{bmatrix} 14 & 3 \\ 6 & -3 \end{bmatrix}$
- **6.** If $A = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$, evaluate A^2 .
 - $\mathbf{A} \begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix}$
 - $\mathbf{B} \begin{bmatrix} 25 & 0 \\ 0 & 4 \end{bmatrix}$
- 7. If $\triangle ABC$ is defined by the matrix
 - $P = \begin{bmatrix} -7 & 4 & 2 \\ 3 & -1 & 6 \end{bmatrix}$, what are the coordinates

of $\triangle ABC$ after it has been rotated 90 degrees counterclockwise?

- **A** $\begin{bmatrix} -3 & 1 & -6 \\ -7 & 4 & 2 \end{bmatrix}$
- $\mathbf{B} \begin{bmatrix} 3 & -1 & 6 \\ -7 & 4 & 2 \end{bmatrix}$
- $c \begin{bmatrix} 3 & -1 & 6 \\ 7 & -4 & -2 \end{bmatrix}$
- $D \begin{bmatrix} 7 & -4 & -2 \\ -3 & 1 & -6 \end{bmatrix}$

Form A continued

8. $\triangle ABC$ has vertices A(0, 2), B(-3, -2), and C(2, -4). What are the coordinates of the image of $\triangle ABC$ after it has been reflected using the reflection matrix $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$?

A A'(0, 2), B'(-3, -4), C'(-2, -4)

- **B** A'(0, -2), B'(-3, 2), C'(2, 4)
- **9.** Find the determinant of $\begin{bmatrix} 5 & 3 \\ 4 & 6 \end{bmatrix}$.

A -42

C 18

B -18

D 42

10. Find the determinant of 1 0 1. lο

A -2

C 0

B -1

D 1

11. What are the solutions of the system

$$\begin{cases} 3x + 5y = 29 \\ 5x + 2y = 23 \end{cases}$$
, where $D = \begin{bmatrix} 3 & 5 \\ 5 & 2 \end{bmatrix}$?

A
$$x = \frac{\begin{vmatrix} 3 & 29 \\ 5 & 23 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} 29 & 5 \\ 23 & 2 \end{vmatrix}}{D}$$

B
$$x = \frac{\begin{vmatrix} 5 & 29 \\ 2 & 23 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} 29 & 3 \\ 23 & 5 \end{vmatrix}}{D}$$

C
$$x = \frac{\begin{vmatrix} 23 & 2 \\ 29 & 5 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} 5 & 23 \\ 3 & 29 \end{vmatrix}}{D}$$

D
$$x = \frac{\begin{vmatrix} 29.5 \\ 23.2 \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} 3.29 \\ 5.23 \end{vmatrix}}{D}$$

12. Is $\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$ the inverse of $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$?

A Yes

B No

13. Which matrix is the inverse of $\begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$?

A $\frac{1}{2} \begin{bmatrix} -4 & 2 \\ 5 & -3 \end{bmatrix}$ **C** $\begin{bmatrix} -4 & 2 \\ 5 & -3 \end{bmatrix}$

B $\frac{1}{2}\begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$ D $\begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$

14. What is the augmented matrix for the system $\begin{cases} 7x + 2y = -9 \\ 4x - 8 = y \end{cases}$?

 $A \begin{bmatrix} 7 & 2 & -9 \\ 4 & -8 & 1 \end{bmatrix}$

B $\begin{bmatrix} 7 & 2 & -9 \\ 4 & -1 & 8 \end{bmatrix}$

15. $\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 6 \end{bmatrix}$ is the reduced row-echelon

form of which of the following?

 $\mathbf{A} \begin{bmatrix} -4 & 0 & 1 \\ 0 & 6 & 1 \end{bmatrix}$

 $\begin{bmatrix} -4 & -2 & 8 \\ 6 & 3 & 18 \end{bmatrix}$

 $\mathbf{c} \begin{bmatrix} 2 & 3 & -20 \\ 4 & 5 & 54 \end{bmatrix}$

 $D \begin{bmatrix} 2 & 5 & 22 \\ 3 & 1 & -6 \end{bmatrix}$

16. The system of equations

2x + 2y - z = 134x - y = 7represents the

7v - 4v = 11

number of red, green, and blue cubes you will need to help your younger sister practice her addition and subtraction. Use x as the number of red cubes, y as the number of green cubes, and z as the number of blue cubes. What is the number of each color of cubes you will need to gather to help your sister?

A 3 red, 5 green, and 3 blue

B 4 red, 9 green, and 13 blue

Form B

Select the best answer.

1. The table shows the number of books two students read each month. Which matrix displays the data in the table?

Number of Books Read per Month							
Student	tudent Jan Feb March April						
Fred	3	0	4	6			
Terrie	1	8	2	7			

- $D \begin{bmatrix} 8 & 2 & 7 \\ 0 & 4 & 6 \end{bmatrix}$
- **2.** If $A = \begin{bmatrix} 5 & 3 & -2 \\ 6 & -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -4 & 3 \\ 9 & 6 & 2 \end{bmatrix}$, evaluate A - B
 - $\mathbf{F} \begin{bmatrix} 4 & -1 & 1 \\ 15 & 5 & 5 \end{bmatrix}$
 - $G\begin{bmatrix} 6 & 7 & -2 \\ -3 & -7 & 3 \end{bmatrix}$
 - $H \begin{bmatrix} 6 & 7 & -5 \\ -3 & -7 & 1 \end{bmatrix}$
 - $J \begin{bmatrix} 6 & 7 & -5 \\ 6 & -1 & 3 \end{bmatrix}$
- 3. If $C = \begin{bmatrix} 2 & -5 \\ 5 & 0 \\ -3 & 7 \end{bmatrix}$ and $D = \begin{bmatrix} 9 & 2 \\ -3 & 4 \\ -5 & 0 \end{bmatrix}$

evaluate 3C - 2D.

- $\mathbf{A} \begin{bmatrix} -12 & -19 \\ 21 & -8 \\ 1 & 21 \end{bmatrix} \qquad \mathbf{C} \begin{bmatrix} 11 & -3 \\ 2 & 4 \\ -8 & 7 \end{bmatrix}$
- $\mathbf{B} \begin{bmatrix} -7 & -7 \\ 8 & -4 \\ 2 & -7 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 24 & -11 \\ 9 & 8 \end{bmatrix}$

- **4.** For $S_{2 \times 6}$ and $T_{6 \times 5}$, what are the dimensions of ST?
 - $\mathbf{F} 2 \times 2$
- $H 5 \times 6$
- $G 2 \times 5$
- \mathbf{J} 6 \times 6
- **5.** If $P = \begin{bmatrix} 5 & -1 & 2 \\ 0 & 3 & 0 \end{bmatrix}$ and $Q = \begin{bmatrix} 2 & 2 \\ -1 & 1 \\ 1 & 2 \end{bmatrix}$,

evaluate *PQ*.

- $\mathbf{A} \begin{bmatrix} -3 & 3 \\ 13 & 9 \end{bmatrix} \qquad \qquad \mathbf{C} \begin{bmatrix} 11 & 9 \\ 3 & 3 \end{bmatrix}$
- **B** $\begin{bmatrix} 10 & 10 \\ 2 & -2 \end{bmatrix}$ **D** $\begin{bmatrix} 13 & 9 \\ -3 & 3 \end{bmatrix}$
- **6.** If $A = \begin{bmatrix} 5 & -1 \\ 0 & 2 \end{bmatrix}$, evaluate A^2 .
 - $\mathbf{F} \begin{bmatrix} 10 & -2 \\ 0 & 4 \end{bmatrix} \qquad \qquad \mathbf{H} \begin{bmatrix} 25 & 1 \\ 0 & 4 \end{bmatrix}$
 - **G** $\begin{bmatrix} 25 & -7 \\ 0 & 4 \end{bmatrix}$ **J** $\begin{bmatrix} 25 & -7 \\ 25 & -7 \end{bmatrix}$
- **7.** If $\triangle ABC$ is defined by the matrix $P = \begin{bmatrix} -7 & 4 & 2 \\ 3 & -1 & 6 \end{bmatrix}$, what are the coordinates of $\triangle ABC$ after it has been reflected using the reflection matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$?

 - **A** $\begin{bmatrix} -7 & 4 & 2 \\ -3 & 1 & -6 \end{bmatrix}$ **C** $\begin{bmatrix} -3 & -1 & -6 \\ -7 & 4 & 2 \end{bmatrix}$
 - $\mathbf{B} \begin{bmatrix} -7 & 4 & 2 \\ -3 & -1 & 6 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 3 & -1 & 6 \\ -7 & 4 & 2 \end{bmatrix}$
- **8.** $\triangle ABC$ has vertices A(8, 1), B(3, -4),C(-2, 5). What are the coordinates of the image of $\triangle ABC$ after it has been rotated using the rotation matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?
 - **F** A'(-8, 1), B'(-3, -4), C'(2, 5)
 - **G** A'(-1, 8), B'(4, 3), C'(-5, -2)
 - **H** A'(1, 8), B'(-4, 3), C'(5, -2)
 - **J** A'(8,-1), B'(3,4), C'(-2,-5)

Form B continued

- **9.** Find the determinant of $\begin{bmatrix} 3 & -6 \\ 5 & 4 \end{bmatrix}$.
 - **A** -42
- **C** 18
- **B** -18
- **D** 42
- **10.** Find the determinant of $\begin{bmatrix} 1 & 3 & -6 \\ 0 & 0 & -1 \\ -1 & 5 & 4 \end{bmatrix}$.
 - **F** 8

- **H** 18
- **G** 12
- J 21
- 11. What are the solutions of the system

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}, \text{ where } D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_1 \end{vmatrix}?$$

- **A** $x = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{c_2}, y = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{c_2}$
- **B** $x = \frac{\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}}{c_2}, y = \frac{\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix}}{c_2}$
- **C** $x = \frac{\begin{vmatrix} c_2 & b_2 \\ c_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_2 & b_2 \\ c_1 & b_1 \end{vmatrix}}, y = \frac{\begin{vmatrix} a_2 & c_2 \\ a_1 & c_1 \end{vmatrix}}{\begin{vmatrix} c_2 & c_2 \\ c_1 & c_1 \end{vmatrix}}$
- **D** $x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} c_2 & b_2 \end{vmatrix}}, y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} c_2 & c_2 \end{vmatrix}}$
- **12.** Which matrix is the inverse of $\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$?

 - $\mathbf{F} \begin{bmatrix} -2 & -1 \\ -1 & -1 \end{bmatrix} \qquad \mathbf{H} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$
 - $G\begin{bmatrix} -1 & -2 \\ -1 & -1 \end{bmatrix}$
- $J\begin{bmatrix}1&\frac{1}{2}\\1&1\end{bmatrix}$

- **13.** Which matrix is the inverse of $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$?
 - A $\frac{1}{10}\begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$ C $\frac{1}{10}\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$
 - $\mathbf{B} \ \frac{1}{10} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$
- 14. What is the augmented matrix for the system $\begin{cases} -9 - 2y = 7x \\ -4x - 8 = y \end{cases}$?
 - $\mathbf{F} \begin{bmatrix} -7 & -2 & 9 \\ -4 & -1 & 8 \end{bmatrix} \qquad \mathbf{H} \begin{bmatrix} -4 & -1 & 9 \\ -7 & -2 & 8 \end{bmatrix}$
 - $G\begin{bmatrix} -7 & -2 & 9 \\ -4 & 0 & 8 \end{bmatrix}$ $J\begin{bmatrix} 7 & 2 & 9 \\ 4 & 1 & 8 \end{bmatrix}$
- **15.** What is $\begin{bmatrix} 9 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -18 \\ 8 \end{bmatrix}$ in reduced row-echelon form?

 - **A** $\begin{bmatrix} 0 & 0 & | -4 \\ 0 & 0 & | 6 \end{bmatrix}$ **D** $\begin{bmatrix} 9 & 3 & | -18 \\ 0 & 1 & | 6 \end{bmatrix}$

 - **B** $\begin{bmatrix} 1 & 0 & | -4 \\ 0 & 1 & | 6 \end{bmatrix}$ **C** $\begin{bmatrix} 9 & 0 & | -36 \\ 0 & 1 & | 6 \end{bmatrix}$
- **16.** The system of equations

$$\begin{cases} 2x + 2y - z = 13 \\ 4x - y = 8 \end{cases}$$
 represents the
$$10y - 3z = 37$$

number of red, green, and blue cubes you will need to help your younger sister practice her addition and subtraction. Use x as the number of red cubes, y as the number of green cubes, and z as the number of blue cubes. What is the number of each color of cubes you will need to gather to help your sister?

- F 3 red, 1 green, and 4 blue
- G 3 red, 4 green, and 1 blue
- H 4 red, 1 green, and 3 blue
- J 4 red, 3 green, and 1 blue

Form C

Select the best answer.

1. The table shows the number of books three students read each month. Which matrix displays the data in the table?

Number of Books Read per Month							
Student	t Jan Feb March April						
Jake	3	0	4	6			
Erika	1	8	2	7			
Bruce	5	8	0	9			

- $\mathbf{A} \begin{bmatrix} 3 & 0 & 4 & 6 \\ 1 & 8 & 2 & 7 \\ 5 & 8 & 0 & 9 \end{bmatrix} \qquad \mathbf{C} \begin{bmatrix} 3 & 0 & 4 & 6 \\ 1 & 8 & 2 & 7 \end{bmatrix}$
- **B** $\begin{bmatrix} 3 & 0 & 4 & 6 \\ 3 & 0 & 4 & 6 \\ 3 & 0 & 4 & 6 \end{bmatrix}$ **D** $[5 \ 8 \ 0 \ 9]$
- **2.** If $A = \begin{bmatrix} 5 & 3 & -2 \\ 6 & -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -4 & 3 \\ 9 & 6 & 2 \end{bmatrix}$, evaluate B - A.
 - $\mathbf{F} \begin{bmatrix} -6 & -7 & 5 \\ -3 & -7 & 1 \end{bmatrix} \qquad \mathbf{H} \begin{bmatrix} 4 & -1 & 1 \\ 15 & 5 & 5 \end{bmatrix}$
 - $G\begin{bmatrix} -6 & -7 & 5 \\ 3 & 7 & -1 \end{bmatrix}$ $J\begin{bmatrix} 6 & 7 & -5 \\ -3 & -7 & 1 \end{bmatrix}$
- 3. If $C = \begin{bmatrix} 2 & -5 \\ 5 & 0 \\ -3 & 7 \end{bmatrix}$, $D = \begin{bmatrix} 9 & 2 \\ -3 & 4 \\ -5 & 0 \end{bmatrix}$, and
 - $E = \begin{bmatrix} 4 & -1 \\ 0 & 3 \\ -5 & 2 \end{bmatrix}$, evaluate 3C (D 2E).
 - $\mathbf{A} \begin{bmatrix} -11 & -15 \\ 18 & -10 \\ -24 & 17 \end{bmatrix} \qquad \mathbf{C} \begin{bmatrix} 7 & -11 \\ 12 & -2 \\ -4 & 17 \end{bmatrix}$

 - $\mathbf{B} \begin{bmatrix} 5 & -19 \\ 18 & 2 \\ -14 & 25 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 23 & -15 \\ 12 & 10 \\ -24 & 25 \end{bmatrix}$

- **4.** For $S_{4\times 3}$, $T_{5\times 3}$, and $V_{3\times 4}$, which of the following exists?
 - **F** STV
- H SVT
- **G** VST
- J TVS
- 5. If $P = \begin{bmatrix} 2 & 2 \\ -1 & 1 \\ 1 & 0 \end{bmatrix}$, and $Q = \begin{bmatrix} 5 & -1 & 2 \\ 1 & 4 & -2 \end{bmatrix}$,

evaluate PQ.

- **A** $\begin{bmatrix} 13 & 9 \\ -4 & 6 \end{bmatrix}$ **C** $\begin{bmatrix} 12 & -4 & 5 \\ 6 & 5 & -1 \\ 0 & -4 & 2 \end{bmatrix}$
- **B** $\begin{bmatrix} 12 & 6 & 0 \\ -4 & 5 & -4 \\ 5 & 1 & 2 \end{bmatrix}$ **D** *PQ* does not exist.
- **6.** If $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, evaluate A^3 .
 - $\mathbf{F} \begin{bmatrix} -2 & 2 \\ -2 & -2 \end{bmatrix} \qquad \qquad \mathbf{H} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
- - $\mathbf{G} \begin{bmatrix} -2 & 1 \\ -1 & -2 \end{bmatrix} \qquad \mathbf{J} \begin{bmatrix} 3 & 3 \\ -3 & 3 \end{bmatrix}$
- **7.** If $\triangle ABC$ is defined by the matrix
 - $P = \begin{bmatrix} -7 & 4 & 2 \\ 3 & -1 & 6 \end{bmatrix}$, what transformation will rotate $\triangle ABC$ 90 degrees in a clockwise direction?

- **8.** $\triangle ABC$ has vertices A(0, 2), B(-3, -2), and C(2, -4). What are the coordinates of the image of $\triangle ABC$ after it has been reflected by the matrix $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ and then rotated by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?
 - **F** A'(0,2), B'(3,-2), C'(-2,-4)
 - **G** A'(0,2), B'(3,2), C'(2,4)
 - **H** A'(-2,0), B'(2,3), C'(4,-2)
 - **J** A'(2,0), B'(-2,-3), C'(-4,2)

Form C continued

- - **A** -2

- **B** -1
- **D** 1
- 10. Find the determinant of 2 3 1 .
 - **F** -24
- **H** 18
- **G** -18
- **J** 24
- 11. What are the solutions of the system

$$\begin{cases} ax + by = c \\ px + qy = r \end{cases}, \text{ where } D = \begin{bmatrix} a & b \\ p & q \end{bmatrix}?$$

- $\mathbf{A} \ \ x = \frac{\begin{vmatrix} a & c \\ p & r \end{vmatrix}}{\mathbf{D}}, \ \ y = \frac{\begin{vmatrix} c & b \\ r & q \end{vmatrix}}{\mathbf{D}}$
- **B** $x = \begin{vmatrix} b & c \\ q & r \end{vmatrix}, y = \begin{vmatrix} c & a \\ r & p \end{vmatrix}$
- **C** $x = \frac{\begin{vmatrix} r & q \\ c & b \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} p & r \\ a & c \end{vmatrix}}{D}$
- **D** $x = \frac{\begin{vmatrix} c & b \\ r & q \end{vmatrix}}{D}, y = \frac{\begin{vmatrix} a & c \\ p & r \end{vmatrix}}{D}$
- 12. Which matrix has no inverse?

 - $\mathbf{F} \begin{bmatrix} -2 & -1 \\ -1 & 0.5 \end{bmatrix} \qquad \mathbf{H} \begin{bmatrix} ab & \frac{1}{c} \\ bc & \frac{1}{a} \end{bmatrix}$
 - $\mathbf{G} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $J \begin{bmatrix} \frac{1}{3} & -1 \\ -1 & 0 & 3 \end{bmatrix}$
- **13.** Which matrix is the inverse of $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$?
 - $A \begin{bmatrix} 0.3 & -0.1 \\ -0.2 & 0.4 \end{bmatrix}$
 - **B** $\frac{1}{10}\begin{bmatrix} -4 & -1 \\ -2 & -3 \end{bmatrix}$
 - $c \begin{bmatrix} -0.4 & 0.2 \\ 0.1 & -0.3 \end{bmatrix}$
 - $D\begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$

What is the augmented matrix for the

system
$$\begin{cases} -9 - 2y = 7x \\ 5 - 2x = 2 - 5y \end{cases}$$
?

- $\mathbf{F} \begin{bmatrix} -7 & -2 & -9 \\ -2 & 5 & -3 \end{bmatrix}$
- $G\begin{bmatrix} -7 & -2 & 9 \\ 2 & -5 & -3 \end{bmatrix}$
- $H \begin{bmatrix} 7 & -2 & 9 \\ -2 & 5 & -3 \end{bmatrix}$
- $J \begin{bmatrix} 7 & 2 & -9 \\ 2 & -5 & 3 \end{bmatrix}$
- 15. Which of the following is NOT equivalent
 - to $\begin{bmatrix} 9 & 3 & | & -18 \\ 1 & 2 & | & 8 \end{bmatrix}$?

 - **A** $\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 6 \end{bmatrix}$ **C** $\begin{bmatrix} 3 & 1 & -6 \\ 3 & 6 & 24 \end{bmatrix}$

 - $\mathbf{B} \begin{bmatrix} 3 & 9 & -18 \\ 2 & 1 & 8 \end{bmatrix} \qquad \mathbf{D} \begin{bmatrix} 9 & 3 & -18 \\ 10 & 5 & -10 \end{bmatrix}$
- **16.** The system of equations

$$\begin{cases} x + 2y - z = 13 \\ 4x - y = 8 \end{cases}$$
 represents the

$$10y - 3z = 37$$

number of red, green, and blue cubes you will need to help your younger sister practice her addition and subtraction. Use x as the number of red cubes, y as the number of green cubes, and z as the number of blue cubes. What is the total number of cubes you will need to gather to help your sister?

F 8

- **H** 12
- **G** 10
- **J** 14

Form A

1. The table shows the number of books two students read each month. Write a matrix that displays the data in the table.

Number of Books Read per Month						
Student January February						
Bill	4	1				
Rene	2	0				

- **2.** If $A = \begin{bmatrix} 4 & 1 & 5 \\ 7 & 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 & 6 \\ 7 & 8 & 5 \end{bmatrix}$, evaluate A + B.
- **3.** If $C = \begin{bmatrix} 3 & 6 \\ 2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 7 & 1 \\ 5 & 0 \end{bmatrix}$, evaluate C + 2D.
- **4.** For $S_{2 \times 5}$ and $T_{5 \times 2}$, what are the dimensions of ST?
- **5.** If $P = \begin{bmatrix} 4 & 2 \\ 3 & 5 \end{bmatrix}$ and $Q = \begin{bmatrix} 3 & 7 \\ 0 & 0 \end{bmatrix}$, evaluate PQ.
- **6.** If $A = \begin{bmatrix} 4 & 0 \\ 1 & 3 \end{bmatrix}$, evaluate A^2 .

- 7. If $\triangle ABC$ is defined by the matrix $P = \begin{bmatrix} 4 & 3 & 1 \\ 1 & 5 & 2 \end{bmatrix}$, what are the coordinates of $\triangle ABC$ after it has been rotated 90 degrees counterclockwise?
- **8.** $\triangle ABC$ has vertices A(1, 0), B(4, 3), and C(5, -1). What are the coordinates of the image of $\triangle ABC$ after it has been reflected using the reflection matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$?
- **9.** Find the determinant of $\begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$.
- **10.** Find the determinant of $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$.
- 11. What are the solutions of the system $\begin{cases} 4x + 6y = 16 \\ 3x + 7y = 17 \end{cases}$ where $D = \begin{bmatrix} 4 & 6 \\ 3 & 7 \end{bmatrix}$?

- **12.** If $\begin{bmatrix} 4 & 2 \\ 6 & x \end{bmatrix}$ has no inverse, what is the value of x?
- **13.** What matrix is the inverse of $\begin{bmatrix} 5 & 3 \\ 3 & 1 \end{bmatrix}$?

Name	Date	Class	
------	------	-------	--

CHAPTER Chapter Test Form A continued

14. What is the augmented matrix for the

- $system \begin{cases} 8x 3y = 6 \\ 5x 9 = y \end{cases}?$
- **15.** What is $\begin{bmatrix} 4 & 1 & 6 \\ 2 & 3 & 8 \end{bmatrix}$ in reduced row-echelon form?
- 16. The system of equations

$$\begin{cases} 4x + 2y + z = 20 \\ 2x + 3y + 4z = 28 \text{ represents the} \\ x + 4y + 2z = 19 \end{cases}$$

number of red, green, and blue cubes you will need to help your younger sister practice her addition and subtraction. Use x as the number of red cubes, y as the number of green cubes, and z as the number of blue cubes. What is the number of each color of cubes you will need to gather to help your sister?

Form B

1. The table shows the number of books two students read each month. Write a matrix that displays the data in the table.

Number of Books Read per Month							
Student	Student Jan Feb March April						
Carol	6	3	0	2			
Brian	4	7	1	5			

- **2.** If $A = \begin{bmatrix} 6 & 4 & -2 \\ 7 & -1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -5 & 6 \\ 8 & -2 & 4 \end{bmatrix}$, evaluate A B.
- 3. If $C = \begin{bmatrix} 3 & -5 \\ 5 & 0 \\ -3 & 8 \end{bmatrix}$ and $D = \begin{bmatrix} 8 & 3 \\ -6 & 2 \\ -9 & 1 \end{bmatrix}$, evaluate 3C 2D.
- **4.** For $S_{2 \times 6}$ and $T_{6 \times 3}$, what are the dimensions of ST?
- 5. If $P = \begin{bmatrix} 4 & -3 & 5 \\ 0 & 6 & -1 \end{bmatrix}$ and $Q = \begin{bmatrix} 3 & 6 \\ -2 & 2 \\ 0 & 1 \end{bmatrix}$, evaluate PQ.
- **6.** If $A = \begin{bmatrix} 4 & -2 \\ 0 & 5 \end{bmatrix}$, evaluate A^2 .

- 7. If $\triangle ABC$ is defined by the matrix $P = \begin{bmatrix} -6 & 3 & 7 \\ 2 & -5 & 3 \end{bmatrix}$, what are the coordinates of $\triangle ABC$ after it has been reflected using the reflection matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$?
- **8.** $\triangle ABC$ has vertices A(2, 2), B(5, 1), and C(6, -3). What are the coordinates of the image of $\triangle ABC$ after it has been rotated using the rotation matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?
- **9.** Find the determinant of $\begin{bmatrix} 3 & -7 \\ 4 & 6 \end{bmatrix}$.
- **10.** Find the determinant of $\begin{bmatrix} 0 & 0 & -1 \\ 2 & 6 & 2 \\ -3 & 7 & 1 \end{bmatrix}$.
- 11. Use Cramer's Rule to solve the system of equations $\begin{cases} 2x + 3y = 2 \\ 5x + 4y = 12 \end{cases}$
- **12.** If $\begin{bmatrix} -4 & 0.5 \\ 6 & x \end{bmatrix}$ has no inverse, what is the value of x?
- 13. What matrix is the inverse of $\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$?

Name	Date	Class	
------	------	-------	--

Chapter Test

Form B continued

- 14. What is the augmented matrix for the system $\begin{cases} 8 + 3y = -2x \\ -4x + 5 = y \end{cases}$?
- **15.** What is $\begin{bmatrix} 4 & 3 & 17 \\ -2 & 6 & 14 \end{bmatrix}$ in reduced row-echelon form?
- 16. The system of equations

$$\begin{cases} 3x + 3y - 2z = 19 \\ 3y - 6z = 3 \end{cases}$$
 represents the
$$6x + 4z = 28$$

number of red, green, and blue cubes you will need to help your younger sister practice her addition and subtraction. Use x as the number of red cubes, y as the number of green cubes, and z as the number of blue cubes. What is the number of each color of cubes you will need to gather to help your sister?

Chapter Chapter Test

4 Form C

1. The table shows the number of books two students read each month. Write a 2×4 matrix that displays the data in the table and a 4×2 matrix that displays the same data.

Number of Books Read per Month						
Student Jan Feb March April						
Bruce	8	9	2	1		
Sharon	0	6	9	0		

2. If $A = \begin{bmatrix} 7 & 5 & -8 \\ 5 & -4 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & -6 & 7 \\ 10 & 3 & -9 \end{bmatrix}$, evaluate B - A.

3. If
$$C = \begin{bmatrix} 3 & -4 \\ 6 & 1 \\ -5 & 8 \end{bmatrix}$$
, $D = \begin{bmatrix} 8 & 3 \\ -5 & 5 \\ -7 & 1 \end{bmatrix}$, and $E = \begin{bmatrix} 5 & -2 \\ 0 & 4 \\ -6 & 3 \end{bmatrix}$, evaluate $3C - (D - 2E)$.

4. If $S_{3\times 4}$, $T_{4\times 3}$, and $V_{5\times 3}$, name a matrix with 20 entries.

5. If
$$P = \begin{bmatrix} 3 & 3 \\ -2 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 6 & -2 & 4 \\ 2 & 7 & -4 \end{bmatrix}$, evaluate PQ .

- **6.** If $A = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$, evaluate A^3 .
- 7. If $\triangle ABC$ is defined by the matrix $P = \begin{bmatrix} -8 & 5 & 6 \\ 2 & -2 & 7 \end{bmatrix}$, what rotation matrix should it be multiplied by to rotate it 90 degrees in a clockwise direction?
- **8.** $\triangle ABC$ has vertices A(3, 3), B(7, 2), and C(4, -4). What are the coordinates of the image of $\triangle ABC$ after it has been reflected by the matrix $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ and then rotated by the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?
- 9. Find the determinant of [1 1 0].
- **10.** Find the determinant of $\begin{bmatrix} 3 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$.
- **11.** Use Cramer's Rule to solve the system of equations $\begin{cases} -2x 5y = 45 \\ 7x 3y = -14 \end{cases}$
- **12.** If $\begin{bmatrix} x & 2 \\ 6 & x \end{bmatrix}$ has no inverse, what is the value of x?

Chapter Test

Form C continued

- **13.** What matrix is the inverse of $\begin{bmatrix} \pi & 1 \\ 2 & \frac{1}{\pi} \end{bmatrix}$?
- 14. What is the augmented matrix for the system $\begin{cases} -7 + 3y = -4x \\ 6 - 5x = 4 + y \end{cases}$?
- **15.** What is $\begin{bmatrix} 3 & -4 \\ -5 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in reduced row-echelon form?
- 16. At Harry's Farm Stand, two apples and three pears cost \$4.05. Five apples and two oranges cost \$4.85. Three oranges and four pears cost \$5.05. What is the cost of each type of fruit?

Answer Key continued

33. D

34. J

35. C

36. F

37. B

38. H

39. D

40. H

41. A

42. H

CHAPTER 4

Section Quiz: Section A

1. A

2. J

3. A

4. J

5. B

6. H

7. B

8. H

Section Quiz: Section B

1. C

2. G

3. C

4. G

5. D

6. G

7. B

8. F

Chapter Test Form A

1. A

2. B

3. D

4. A

5. D

6. B

7. A

8. A

9. C

10. A

11. D

12. A

13. B

14. B

15. D

16. B

Chapter Test Form B

1. A

2. H

3. A

4. G

5. D

6. G

7. A

8. G

9. D

10. F

11. D

12. H

13. A

14. F

15. B

16. G

Answer Key continued

Chapter Test Form C

- 1. A
- **2**. G
- **3.** B
- **4.** J
- **5.** B
- 6. F
- **7.** C
- 8. G
- 9. A
- **10.** G
- **11.** D
- **12.** H
- 13. A
- **14**. J
- **15.** B
- 16. F

Chapter Test Form A

- **3.** $\begin{bmatrix} 17 & 8 \\ 12 & 1 \\ 6 & 10 \end{bmatrix}$
- 4. 2×2

- 7. $\begin{bmatrix} -1 & -5 & -2 \\ 4 & 3 & 1 \end{bmatrix}$
- **8.** A'(1,0), B(4,-3), C(5,1)
- **9.** -10
- **10.** -2

11.
$$x = \frac{\begin{vmatrix} 16 & 6 \\ 17 & 7 \end{vmatrix}}{D}$$
, $y = \frac{\begin{vmatrix} 4 & 16 \\ 3 & 17 \end{vmatrix}}{D}$

- 16. 3 red, 2 green, and 4 blue.

Chapter Test Form B

- **6.** $\begin{bmatrix} 16 & -18 \\ 0 & 25 \end{bmatrix}$ **7.** $P' = \begin{bmatrix} -6 & 3 & 7 \\ -2 & 5 & -3 \end{bmatrix}$
- **9.** 46
- **10.** -39

- 16. 4 red, 3 green, and 1 blue.

Chapter Test Form C

1. $\begin{bmatrix} 8 & 9 & 2 & 1 \\ 0 & 6 & 9 & 0 \end{bmatrix}$ and $\begin{bmatrix} 8 & 0 \\ 9 & 6 \\ 2 & 9 \\ 1 & 0 \end{bmatrix}$

Answer Key continued

2.
$$\begin{bmatrix} -10 & -11 & 15 \\ 5 & 7 & -15 \end{bmatrix}$$

3.
$$\begin{bmatrix} 11 & -19 \\ 23 & 6 \\ -20 & 29 \end{bmatrix}$$

5.
$$\begin{bmatrix} 24 & 15 & 0 \\ -8 & 18 & 0 \\ 2 & 7 - 4 \end{bmatrix}$$

$$\mathbf{6.} \begin{bmatrix} 1 & 0 \\ 1 - 1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

8.
$$A'(3, -3)$$
, $B'(7, -2)$, and $C'(4, -4)$

11.
$$x = -5$$
, $y = -7$

12.
$$\pm\sqrt{12}$$

13.
$$\begin{bmatrix} -\frac{1}{\pi} & 1 \\ 2 & -\pi \end{bmatrix}$$

14.
$$\begin{bmatrix} 4 & 3 & 7 \\ -5 & -1 & -2 \end{bmatrix}$$

15.
$$\begin{bmatrix} 1 & 0 & 11 \\ 0 & 1 & 8 \end{bmatrix}$$

16. apple: \$0.75, pear: \$0.85, orange: \$0.55.

Performance Assessment

1.	Blue		Green	Red	Points
	Kim	4	4	2	54
	Pat	3	7	0	56
	Robin	5	3	2	56

2.
$$\begin{bmatrix} 4 & 4 & 2 & 54 \\ 3 & 7 & 0 & 56 \\ 5 & 3 & 2 & 56 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

4. blue, 7; green, 5; red, 3.

Cumulative Test

- **1.** D
- **2.** G
- **3.** B
- **4.** F
- **5.** D
- **6**. J
- **7.** C
- . [
- **8.** G
- **9.** B
- **10.** H
- **11.** D
- **12.** G
- **13.** A
- **14.** H
- **15.** D
- 16. F
- **17.** D
- **18.** F
- **19.** A
- **20.** F
- **21.** D
- **22.** H
- **23.** B
- **24.** J
- **25**. C
- **26.** H
- **27**. A
- ____
- **28.** H
- **29.** C
- **30.** H
- **31.** A
- **32.** G
- **33.** C
- **34.** H
- **35.** B