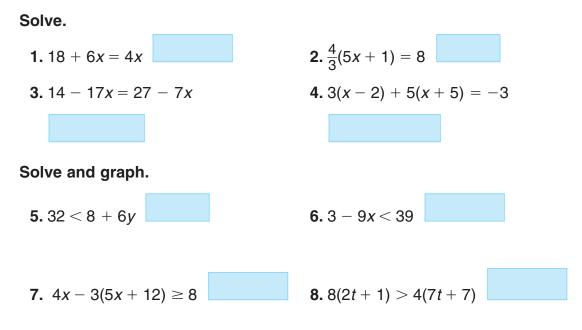


The table contains important vocabulary terms from Chapter 2. As you work through the chapter, fill in the page number, definition, and a clarifying example.

Term	Page	Definition	Clarifying Example
absolute value function			
correlation			
identity			
indirect measurement			
line of best fit			

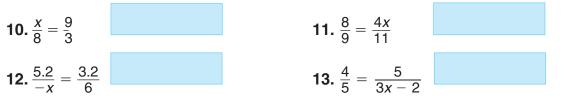
The table contains important vocabulary terms from Chapter 2. As you work through the chapter, fill in the page number, definition, and a clarifying example.

Term	Page	Definition	Clarifying Example
absolute value function	158	A function whose rule contains absolute- value expressions.	$4 \stackrel{4}{\longrightarrow} y$ $f(x) = x $ $f(x) = -x$ $f(x) = -x$ $f(x) = x$
correlation	142	A measure of the strength and direction of the relationship between two variables or data sets.	Positive Negative correlation Correlation
identity	92	An equation that is true for all values of the variables.	3 = 3 2(x - 1) = 2x - 2
indirect measurement	99	A method of measurement that uses formulas, similar figures, and/or proportions.	$\frac{\frac{4}{5} = \frac{60}{h}}{\frac{\text{shadow of friend}}{\text{height of friend}}} = \frac{\frac{1}{5} + \frac{1}{5} + 1$
line of best fit	142	The line that comes closest to all of the points in a data set.	Akron temperature (°F)


Term	Page	Definition	Clarifying Example
linear function			
proportion			
rate			
scale factor			
slope			
<i>y</i> -intercept			

Term	Page	Definition	Clarifying Example
linear function	105	A function that can be written in the form y = mx + b, where x is the independent variable and m and b are real numbers. Its graph is a line.	y = 2x - 1
proportion	97	A statement that two ratios are equal; $\frac{a}{b} = \frac{c}{d}$	$\frac{2}{3} = \frac{4}{6}$
rate	98	A ratio that compares two quantities measured in different units.	$\frac{55 \text{ miles}}{1 \text{ hour}} = 55 \text{ mi/h}$
scale factor	99	The multiplier used on each dimension to change one figure into a similar figure.	$\begin{array}{c c} A \\ B \\ C \\ C$
slope	106	A measure of the steepness of a line. If (x_1, y_1) and (x_2, y_2) are any two points on the line, the slope of the line, known as <i>m</i> , is represented by the equation $m = \frac{y_2 - y_1}{x_2 - x_1}$.	$\frac{4}{4} + \frac{3}{3} + \frac{2}{4} + \frac{3}{4} + \frac{3}{4} + \frac{3}{4} + \frac{2}{4} + \frac{3}{4} + \frac{2}{4} + \frac{3}{4} + \frac{3}$
<i>y</i> -intercept	106	The <i>y</i> -coordinate(s) of the point(s) where a graph intersects the <i>y</i> -axis.	y-intercept

2-1 Solving Linear Equations and Inequalities


Write an equation or inequality, and solve.

9. A barbeque catering company charges a \$45 set up fee plus \$18 per person. The cost of the annual picnic cannot exceed \$720. How many people can attend the barbecue?

2-2 Proportional Reasoning

Solve each proportion.

14. If a 4-feet tall child standing on the beach casts a 6 foot shadow, how long a shadow would a 10-feet high lifeguard station cast at the same time of day?

Know it

2-1 Solving Linear Equations and Inequalities

Solve.

 1. 18 + 6x = 4x x = -9 2. $\frac{4}{3}(5x + 1) = 8$ x = 1

 3. 14 - 17x = 27 - 7x 4. 3(x - 2) + 5(x + 5) = -3

 x = -1.3 x = -2.75

Solve and graph.

5. 32 < 8 + 6y y > 46. 3 - 9x < 39 x > -46. 3 - 9x < 39 x > -47. 3 - 9x < 3 x > -47. 3 - 9x < 3 x > -47.

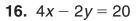
Write an equation or inequality, and solve.

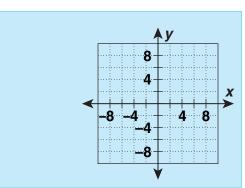
9. A barbeque catering company charges a \$45 set up fee plus \$18 per person. The cost of the annual picnic cannot exceed \$720. How many people can attend the barbecue?

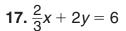
At most, 37 people can attend the barbecue.

2-2 Proportional Reasoning

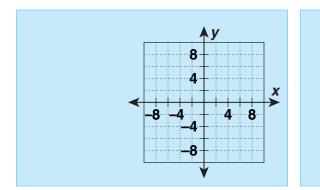
Solve each proportion.

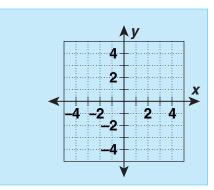

10.
$$\frac{x}{8} = \frac{9}{3}$$
 $x = 24$ 11. $\frac{8}{9} = \frac{4x}{11}$ $x = \frac{22}{9}$ 12. $\frac{5.2}{-x} = \frac{3.2}{6}$ $x = -9.75$ 13. $\frac{4}{5} = \frac{5}{3x-2}$ $x = 2.75$


14. If a 4-feet tall child standing on the beach casts a 6 foot shadow, how long a shadow would a 10-feet high lifeguard station cast at the same time of day?

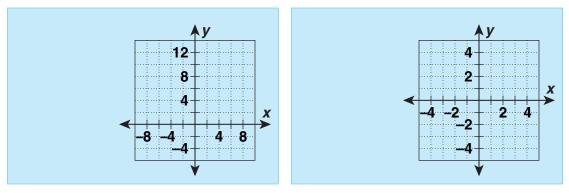

2-3 Graphing Linear Functions

Find the intercepts. Then graph.


15. 3x + 2y = 6

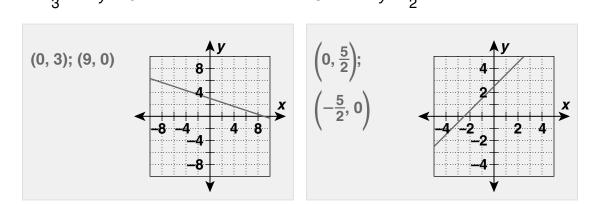


18. $-x + y = \frac{5}{2}$



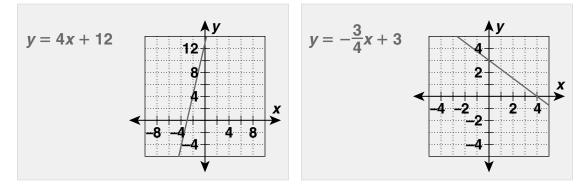
Write each function in slope-intercept form. Then graph.

19. *y* − 4*x* = 12


20. 3x + 4y = 12

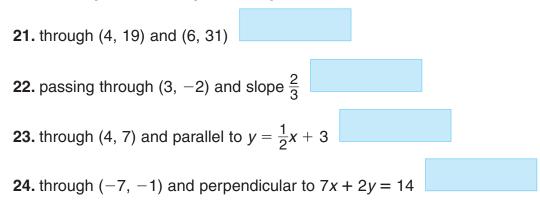
2-3 Graphing Linear Functions

Find the intercepts. Then graph.


15. 3x + 2y = 6(0, 3); (2, 0) 16. 4x - 2y = 20(0, -10); (5, 0) 17. $\frac{2}{3}x + 2y = 6$ 16. 4x - 2y = 2018. $-x + y = \frac{5}{2}$

Write each function in slope-intercept form. Then graph.

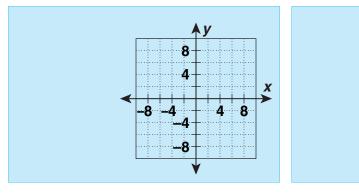
19. *y* − 4*x* = 12

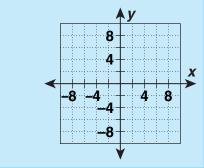

20. 3x + 4y = 12

X

2-4 Writing Linear Functions

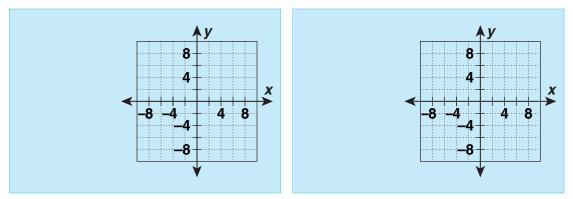
Write an equation in slope-intercept form for each line.




2-5 Linear Inequalities in Two Variables

Solve for *y*. Graph the solution.

25. *y* − 3 ≤ 6


26. 6x + 2y > 12

27. 6x + 4y < 3x - 8

28. 2(2x - 3) + y > 4x - 8

2-4 Writing Linear Functions

Write an equation in slope-intercept form for each line.

21. through (4, 19) and (6, 31) x = 6x - 5

22. passing through (3, -2) and slope $\frac{2}{3}$ $y = \frac{2}{3}x - 4$

23. through (4, 7) and parallel to $y = \frac{1}{2}x + 3$ $y = \frac{1}{2}x + 5$

24. through (-7, -1) and perpendicular to 7x + 2y = 14 $y = \frac{2}{7}x + 1$

2-5 Linear Inequalities in Two Variables

Solve for *y*. Graph the solution.


25. *y* − 3 ≤ 6

26.
$$6x + 2y > 12$$

27. 6x + 4y < 3x - 8

28. 2(2x - 3) + y > 4x - 8

2-6 Transforming Linear Functions

Let g(x) be the indicated transformation of f(x). Write the rule for g(x).

- **29.** f(x) = 2x vertical translation 3 units up
- **30.** f(x) = 4x vertical stretch by a factor of 6
- **31.** f(x) = x + 4 vertical compression by a factor of $\frac{1}{4}$ followed by a horizontal translation right 3 units
 - uctor of $\frac{1}{4}$ 3 units up followed
- **32.** f(x) = 2x 4 vertical translation 6 units up followed by a horizontal stretch with a factor of $\frac{2}{3}$

2-7 Curve-Fitting with Linear Models

33. Find the following for the given table of data.

Source: http://www.tinet.ita.doc.gov/view/f-2000-04-001/index.html

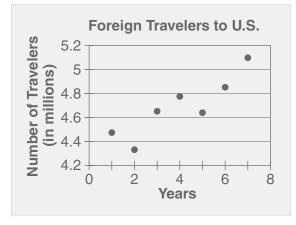
a. Make a scatter plot of the data using years as the independent variable.

Year x	Foreign Travelers
	U.S. (in millions)
1994	4.48
1995	4.33
1996	4.65
1997	4.78
1998	4.64
1999	4.85
2000	5.09

b. Find the correlation coefficient *r* and the line of best fit for the data.

2-6 Transforming Linear Functions

Let g(x) be the indicated transformation of f(x). Write the rule for g(x).


- **29.** f(x) = 2x vertical translation 3 units up
- **30.** f(x) = 4x vertical stretch by a factor of 6
- **31.** f(x) = x + 4 vertical compression by a factor of $\frac{1}{4}$ followed by a horizontal translation right 3 units
- **32.** f(x) = 2x 4 vertical translation 6 units up followed by a horizontal stretch with a factor of $\frac{2}{3}$

2-7 Curve-Fitting with Linear Models

33. Find the following for the given table of data.

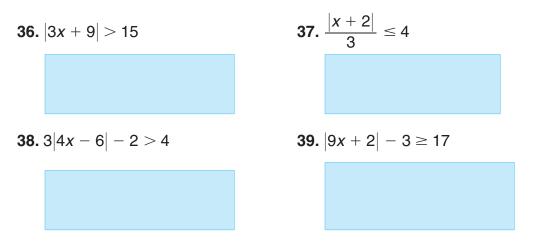
Source: http://www.tinet.ita.doc.gov/view/f-2000-04-001/index.html

a. Make a scatter plot of the data using years as the independent variable.

b. Find the correlation coefficient *r* and the line of best fit for the data.

g(x)=2x+3
g(x)=24x
$g(x)=\frac{1}{4}x+\frac{1}{4}$
$g(x)=\frac{4}{3}x+2$

Year x	Foreign Travelers
	U.S. (in millions)
1994	4.48
1995	4.33
1996	4.65
1997	4.78
1998	4.64
1999	4.85
2000	5.09

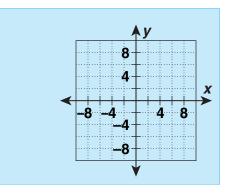

Answers will vary depending on the points used. Using (1, 4.33) and (5, 4.85), y = 0.13x - 4.2. The correlation coefficient is 0.8867

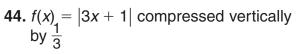
2-8 Solving Absolute-Value Equations and Inequalities

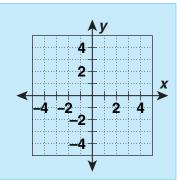
Solve.

34. |18 - 6x| = 30 **35.** 5|x| - 3 = 37

Solve each inequality. Then graph the solution.


2-9 Absolute Value Functions


Translate f(x) = |x| so that the vertex is at the given point.


40. (-1, 4) **41.** (2, 0) **42.** (3, -4)

Perform each transformation. Then graph.

43. f(x) = |x - 4| reflected across the *y*-axis

2-8 Solving Absolute-Value Equations and Inequalities

Solve.

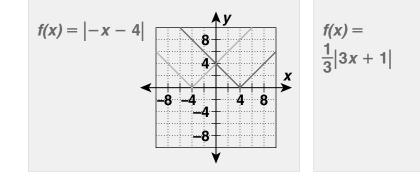
34. |18 - 6x| = 30**35.** 5|x| - 3 = 37**36.** $x = \pm 8$

Solve each inequality. Then graph the solution.

36. $ 3x + 9 > 15$	37. $\frac{ x+2 }{3} \le 4$
$x > 2 \text{ or } x < -8$ $ \underbrace{ + \circ + + + + + + \circ + \circ + }_{-5} 0 $	-14 ≤ x ≤ 10 <-15 -10 -5 0 5 10 15
38. $3 4x-6 -2>4$	39. $ 9x + 2 - 3 \ge 17$
$x \ge 2$, or $x \le 1$ \checkmark	$x \ge 2 \text{ or } x \le -\frac{22}{9}$

2-9 Absolute Value Functions

Translate f(x) = |x| so that the vertex is at the given point.


 40. (-1, 4)
 41. (2, 0)
 42. (3, -4)

 g(x) = |x + 1| + 4 g(x) = |x - 2| g(x) = |x - 3| - 4

Perform each transformation. Then graph.

43. f(x) = |x - 4| reflected across the *y*-axis

44. f(x) = |3x + 1| compressed vertically by $\frac{1}{3}$

X

2

Answer these questions to summarize the important concepts from Chapter 2 in your own words.

1. Explain how inverse operations are used to solve equations.

2. Why do absolute-value equations sometimes have no solution or two solutions?

3. Compare ratios, rates, and proportions.

4. Explain why 0.25, one quarter, 25%, and $\frac{1}{4}$ all represent the same value.

For more review of Chapter 2:

- Complete the Chapter 2 Study Guide and Review on pages 166–169 of your textbook.
- Complete the Ready to Go On quizzes on pages 133 and 165 of your textbook.

Answer these questions to summarize the important concepts from Chapter 2 in your own words.

1. Explain how inverse operations are used to solve equations.

Answers will vary. Possible answer: Inverse operations are used to undo an operation in order to isolate a variable. If you are adding 5 to each side of an equation, you subtract five to undo the addition. The same applies for multiplication and division.

2. Why do absolute-value equations sometimes have no solution or two solutions?

Answers will vary. Possible answer: The absolute value is the distance a number is from zero, so there are two possible equivalent expressions. When simplified sometimes an absolute value equation is equal to a negative number and this can never be true; the equation would have no solution.

3. Compare ratios, rates, and proportions.

Answers will vary. Possible answer: The ratio is a comparison of two numbers by division. A proportion states that two ratios are equal and a rate is a ratio of two measurements having different units of measure.

4. Explain why 0.25, one quarter, 25%, and $\frac{1}{4}$ all represent the same value.

Answers will vary. Possible answer: If you write 0.25, one quarter, 25% and $\frac{1}{4}$ in the same form, for example, as decimals, each number would be written as 0.25.

For more review of Chapter 2:

- Complete the Chapter 2 Study Guide and Review on pages 166–169 of your textbook.
- Complete the Ready to Go On quizzes on pages 133 and 165 of your textbook.